• English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Pure and Applied Sciences
  • RP-Department of Biochemistry and Biotechnology
  • View Item
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Pure and Applied Sciences
  • RP-Department of Biochemistry and Biotechnology
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Isolation and biological characterization of non-B HIV type 1 from Kenya

Thumbnail
View/Open
Full text article (480.7Kb)
Date
2011-11
Author
Ngeranwa, J.J.N.
Muriuki, Joseph K
Mwangi, Joseph
Orinda, G. O.
Lwembe, Raphael
Khamadi, Samuel
Metadata
Show full item record
Abstract
The isolation and characterization of primary strains of human immunodeficiency virus (HIV) is a vital tool for assessing properties of viruses replicating in HIV-infected subjects. HIV-1 isolation was carried out from 30 HIV-1-infected patients from a Comprehensive Care Clinic (CCC) after informed consent. Virus was successfully isolated from 9 out of the 30 samples investigated. Seven of the isolates were from drug-naive patients while two were from patients on antiretroviral drugs. The isolates were biologically phenotyped through measurement of the syncytium-inducing capacity in MT2 cells. Six of the isolates exhibited syncytia induction (SI) associated with CXCR4 coreceptor usage while three of the isolates were non-syncytia-inducing (NSI) isolates associated with CCR5 coreceptor usage. In addition, the replication capacity of the isolates was further determined in established cell line CD4(+) C8166. Indirect immunofluorescence assay was used to check the antigen expression on the cells as a supplementary test. HIV-1 isolation success was 70% (7/10) and 20% (2/20) in naive and drug-experienced patients, respectively. The majority of the viral isolates obtained (6/9) were of the SI phenotype, though SI virus strains are rare among non-B subtypes. A significant correlation between virus isolation success and viral load was established. Coreceptor use data for heavily treatment-experienced patients with limited treatment options are scanty and this is the group with perhaps the most urgent need of novel antiretroviral agents.
URI
http://ir-library.ku.ac.ke/handle/123456789/6791
Collections
  • RP-Department of Biochemistry and Biotechnology [445]

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback

 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback