Estimation of critical streamflow discharge level using nonparametric quantile regression model

dc.contributor.authorKiarie, F.
dc.date.accessioned2016-05-16T13:42:56Z
dc.date.available2016-05-16T13:42:56Z
dc.date.issued2016-04-30
dc.description.abstractVarious parametric models have been designed to analyze volatility in river flow time series data. For maximum likelihood estimation these parametric methods assumes a known conditional distribution. This paper considers the problem of nonparametric estimation of critical streamflow discharge levels of a river regime based on quantile regression methodology of Koenker and Basset (1978).In particular, the paper demonstrates the use of kernel estimators for conditional quantiles resulting from a kernel estimation of conditional distribution function. It is finally proved that the estimate of the nonparametric quantile function is consistent and asymptotically normally distributed and under suitable conditions, the estimator converges uniformly with an appropriate rate.en_US
dc.identifier.citationVol-3, Issue-4 PP. 303-308en_US
dc.identifier.issn2394-5788
dc.identifier.urihttp://ir-library.ku.ac.ke/handle/123456789/14713
dc.language.isoenen_US
dc.publisherGlobal Journal of Advanced Researchen_US
dc.subjectConditional quantileen_US
dc.subjectKernel estimateen_US
dc.subjectQuantileautoregressionen_US
dc.subjectConsistencyen_US
dc.subjectAsymptotic normalityen_US
dc.subjectCritical discharge level.en_US
dc.titleEstimation of critical streamflow discharge level using nonparametric quantile regression modelen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Estimation of critical streamflow discharge level using nonparametric quantile.pdf
Size:
487.79 KB
Format:
Adobe Portable Document Format
Description:
Full Text Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: