Derivation of Cycle Index Formulas of Semidirect Product Groups

dc.contributor.authorMuthoka, Geo-Rey Ngovi
dc.date.accessioned2021-02-10T13:15:33Z
dc.date.available2021-02-10T13:15:33Z
dc.date.issued2019-12
dc.descriptionDepartment of Mathematics and Actuarial Science Kenyatta University A Thesis Submitted in Partial FullLment of the Requirements for the Award of the Degree of Doctor of Philosophy (Pure Mathematics) in the School of Pure and Applied Sciences of Kenyatta University December, 2019en_US
dc.description.abstractThe concept of the cycle index formulas of a permutation group was discovered in the year 1937. Since then cycle index formulas of several groups have been studied by di erent scholars. For instance the cycle index of the dihedral group Dn acting on the set of vertices of a regular n􀀀gon is known and has been applied in enumeration of di erent mathematical structures. In this study the relationship between the cycle index formula of a semidirect product group and the cycle index formulas of the two subgroups which the group is a semidirect product of was established. In particular the cycle index formula of the dihedral group Dn of order 2n is expressed in terms of the cycle index formula of a cyclic group of order two C2 and the cycle index formula of the cyclic group of order n, Cn; the cycle index formula of the symmetric group Sn is expressed in terms of the cycle index formula of the alternating group An and the cycle index formula of a group generated by a cycle of length two, h(ab)i. The cycle index formula of an a ne(p) group has been derived by considering the di erent cycle types of elements of the group and expressed in terms of the cycle index formula of Cp = fx + b; where b 2 Zpg and the cycle index formula of Cp􀀀1 = fax; where 0 6= a 2 Zpg. We further extend this to a ne(q) where q is a power of a prime p and to the a ne square(p) and a ne square(q) groups. Finally, the cycle index formula of a Frobenius group is expressed in terms of the cycle index formula of the Frobenius complement H and the cycle index formula of the Frobenius kernel M. The cycle index formulas which are known such as that of the dihedral group and the symmetric group were used and the groups whose cycle index formulas are not known such as the a ne(p), a ne square(p); a ne(q) and a ne square(q) group were rst derived as part of the research. It was noted that for semidirect groups which are Frobenius such as the dihedral group Dn with an odd value of n, the a ne groups and the a ne square groups, we can fully express the cycle index of the group in terms of the cycle index formulas of the subgroups which the group is a semidirect of. However, for semidirect product groups which are not Frobenius such as the dihedral group Dn with an even value of n and the symmetric group Sn, the cycle index formula of the group cannot be expressed fully in terms of the cycle index formulas of the subgroups the group is a semidirect product of.en_US
dc.description.sponsorshipKenyatta Universityen_US
dc.identifier.urihttp://ir-library.ku.ac.ke/handle/123456789/21419
dc.language.isoenen_US
dc.publisherKenyatta Universityen_US
dc.subjectDerivationen_US
dc.subjectCycle Index Formulasen_US
dc.subjectSemidirecten_US
dc.titleDerivation of Cycle Index Formulas of Semidirect Product Groupsen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Derivation of Cycle Index Formulas.....pdf
Size:
476.94 KB
Format:
Adobe Portable Document Format
Description:
Full Text Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: