Nonparametric Confidence Interval for a Shift Parameter for Cauchy distribution
dc.contributor.author | Odongo, L. O. | |
dc.date.accessioned | 2014-05-30T08:33:36Z | |
dc.date.available | 2014-05-30T08:33:36Z | |
dc.date.issued | 2005 | |
dc.description | doi.org/10.4314/eajosta.v1i1.39150 | en_US |
dc.description.abstract | In this article an application of a kernel based nonparametric approach in constructing a large sample nonparametric confidence interval for a shift parameter is considered. The method is illustrated using the Cauchy distribution as a location model. The kernel-based method is found to have a shorter interval for the shift parameter between two Cauchy distributions than the one based on the Mann-Whitney test statistic. | en_US |
dc.identifier.citation | Journal of Statistics Vol. 1 (1): pp. 1-8 | en_US |
dc.identifier.issn | 1117-1421 | |
dc.identifier.uri | http://ir-library.ku.ac.ke/handle/123456789/9716 | |
dc.language.iso | en | en_US |
dc.publisher | Ife Centre for Psychological Studies | en_US |
dc.subject | Best Asymptotic Normal | en_US |
dc.subject | Cauchy distribution | en_US |
dc.subject | Kernel estimates | en_US |
dc.subject | Mann-Whitney test statistic | en_US |
dc.subject | Nonparametric confidence interval | en_US |
dc.subject | Shift parameter. | en_US |
dc.title | Nonparametric Confidence Interval for a Shift Parameter for Cauchy distribution | en_US |
dc.type | Article | en_US |