LHAM Approach to Fractional Order Rosenau-Hyman and Burgers' Equations

dc.contributor.authorAjibola, S. O.
dc.contributor.authorOke, A. S.
dc.contributor.authorMutuku, W. N.
dc.date.accessioned2020-08-31T13:12:42Z
dc.date.available2020-08-31T13:12:42Z
dc.date.issued2020
dc.descriptionA research article published in Asian Research Journal of Mathematicsen_US
dc.description.abstractFractional calculus has been found to be a great asset in nding fractional dimension in chaos theory, in viscoelasticity di usion, in random optimal search etc. Various techniques have been proposed to solve di erential equations of fractional order. In this paper, the Laplace-Homotopy Analysis Method (LHAM) is applied to obtain approximate analytic solutions of the nonlinear Rosenau-Hyman Korteweg-de Vries (KdV), K(2, 2), and Burgers' equations of fractional order with initial conditions. The solutions of these equations are calculated in the form of convergent series. The solutions obtained converge to the exact solution when α = 1, showing the reliability of LHAM.en_US
dc.identifier.citationAjibola, S. O., Oke, A. S., & Mutuku, W. N. (2020). LHAM Approach to Fractional Order Rosenau-Hyman and Burgers' Equations. Asian Research Journal of Mathematics, 1-14.en_US
dc.identifier.issn2456-477X
dc.identifier.urihttps://www.journalarjom.com/index.php/ARJOM/article/view/30192
dc.identifier.urihttp://ir-library.ku.ac.ke/handle/123456789/20293
dc.language.isoenen_US
dc.publisherAsian Research Journal of Mathematicsen_US
dc.subjectLaplace transformen_US
dc.subjectHomotopy Analysis methoden_US
dc.subjectLaplace Homotopy Analysis methoden_US
dc.subjectFractional derivativeen_US
dc.subjectKdV equationen_US
dc.subjectBurger equationen_US
dc.titleLHAM Approach to Fractional Order Rosenau-Hyman and Burgers' Equationsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LHAM Approach to Fractional Order Rosenau-Hyman.pdf
Size:
177.15 KB
Format:
Adobe Portable Document Format
Description:
Full-text
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: