Moore-Penrose Inverse of Linear Operators in Hilbert Space

Loading...
Thumbnail Image
Date
2022-10
Authors
Mwanzia, J. M.
Kavila, M.
Khalagai, J. M.
Journal Title
Journal ISSN
Volume Title
Publisher
academic journals
Abstract
In this paper, we investigate properties of with closed range satisfying the operator equations
Description
article
Keywords
Moore-Penrose inverse, perturbed linear operator, invertibility of operators
Citation
Mwanzia, J. M., Kavila, M., & Khalagai, J. M. (2022). Moore-Penrose inverse of linear operators in Hilbert space. African Journal of Mathematics and Computer Science Research, 15(2), 5-13.