• English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Pure and Applied Sciences
  • RP-Department of Chemistry
  • View Item
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Pure and Applied Sciences
  • RP-Department of Chemistry
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Damping Effect of the Inner Band Electrons on the Optical Absorption and Bandwidth of Metal Nanoparticles

Thumbnail
View/Open
Abstract (4.375Kb)
Date
2012-11
Author
Ochoo, L.
Migwi, C. M.
Okumu, J.
Metadata
Show full item record
Abstract
Conflicts and discrepancies around nanoparticle (NP) size effect on the optical properties of metal NPs of sizes below the mean free path of electron can be traced to the internal damping effect of the hybrid resonance of the inner band (IB) and the conduction band (CB) electrons of the noble metals. We present a scheme to show how alternative mathematical formulation of the physics of interaction between the CB and the IB electrons of NP sizes <50 nm justifies this and resolves the conflicts. While a number of controversies exist between classical and quantum theories over the phenomenological factors to attribute to the NP size effect on the absorption bandwidth, this article shows that the bandwidth behavior can be well predicted from a different treatment of the IB damping effect, without invoking any of the controversial phenomenological factors. It finds that the IB damping effect is mainly frequency dependent and only partly size dependent and shows how its influence on the surface plasmon resonance can be modeled to show the influence of NP size on the absorption properties. Through the model, it is revealed that strong coupling of IB and CB electrons drastically alters the absorption spectra, splitting it into distinctive dipole and quadrupole modes and even introduce a behavioral switch. It finds a strong overlap between the IB and the CB absorptions for Au and Cu but not Ag, which is sensitive to the NP environment. The CB modes shift with the changing refractive index of the medium in a way that can allow their independent excitation, free of influence of the IB electrons. Through a hybrid of parameters, the model further finds that metal NP sizes can be established not only by their spectral absorption peak locations but also from a proper correlation of the peak location and the bandwidth (FWHM).
URI
http://ir-library.ku.ac.ke/handle/123456789/7759
Collections
  • RP-Department of Chemistry [479]

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback

 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback