• English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   Repository Home
  • Master Theses and Dissertations(MST)
  • MST-School of Pure and Applied Sciences
  • MST-Department of Mathematics
  • MST-Department of Mathematics
  • View Item
  •   Repository Home
  • Master Theses and Dissertations(MST)
  • MST-School of Pure and Applied Sciences
  • MST-Department of Mathematics
  • MST-Department of Mathematics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Residuals influence and weighting in estimation of regression parameters

Thumbnail
View/Open
Full text (27.19Mb)
Date
2012-04-20
Author
Ombui, Thomas Mageto
Metadata
Show full item record
Abstract
We consider analysis and fitting models of the regression data in the fields, which exhibit non-constant variances, which are referred to as regression models. We focus on various approaches and procedures used in estimating the variances in such models as a way of estimating the regression parameters. Chapter 1 comprises the introduction to the subject. In the first part, Chapter 2 and 3 purely discusses the parametric approach, which is commonly used due to its outstanding features of simplicity in computation, compatibility with model assumptions and for its mathematical convenience. The procedures are fully formulated in chapter 2 and the empirical study using the same procedures is covered in Chapter 3. In the second part, Chapter 4 discusses non-parametric method. The central problems of interest are the choice of the smoothing methods, choice of the Kernel and bandwidth. In Chapter 4 we illustrate both parametric and non-parametric methods in a practical situation. A contrast and the conclusion has been done in the same chapter. All the computation has been done in Splus programming language. Table formats and other organization matters are comfortably done in Microsoft Office (Word) while graphics; figure representation and analysis are computer drawn in Microsoft Office (Excel).
URI
http://ir-library.ku.ac.ke/handle/123456789/4152
Collections
  • MST-Department of Mathematics [82]

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback

 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback