Important Parameters for Optimized Metal Nanoparticles‑Aided Electromagnetic Field (EMF) Effect on Cancer
Loading...
Date
2018
Authors
Ochoo, Lawrence
Migwi, Charles
Okumu, John
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Abstract
Background: A number of experimental research findings for the metal nanoparticles
(NPs)-mediated EMF photothermal therapy of cancer cells show an intriguing trend
of the NPs’ size-dependent efficacy. This is a phenomenon we find to trend with the
light absorption bandwidth behavior (full width at half maximum) of the NPs and the
accompanying electric field enhancement. We find that the nanoparticle sizes that
have been reported to produce the optimized effect on cancer cells are of minimum
absorption bandwidth and optimized electric field magnitude. While the death of
cancer cells under the NPs-aided EMF effect has in the past attracted varied interpretations,
either as a thermal or non-thermal effect, photothermal effect has gained a
wide acceptance due to the exhibited hyperthermia. However, the exhibited trend of
the NPs’ size-dependent efficacy is beginning to feature as a possible manifestation of
other overlooked underlying or synergistic phenomenal conditions.
Method: We present a theoretical model and analysis which reveal that the contribution
and efficacy of the metal NPs in the destruction of cancer depend partly but significantly
on the accompanying electric field intensity enhancement factor and partly
on their absorption cross-section.
Results: This paper finds that, other than the expected hyperthermia, the metal NPs’
sizes for the optimized therapy on cancer cells seem to fulfill other synergistic conditions
which need to come to the fore. We find interplay between electric field and
thermal effects as independent energy channels where balancing may be important
for the optimized EMF effect, in the ratio of about 5:1. The required balancing depends
on the absorption bandwidth and absorption cross-section of the NPs, the frequency
of EMF used and the relative permittivity of the cancer cells. The NPs’ size-dependent
efficacy decreases away from the NPs’ size of minimum absorption bandwidth, which
is around 20 nm for Au NPs or other shapes of equivalent surface area–volume ratio.
While the absorption wavelength peak for metal NPs would change with the change
of shape, the responsible condition(s) for optimizing the efficacy remains relatively
invariable.
Conclusion: From the modeling and the analysis of the NPs’ size for optimizing the
EMF therapy on cancer cells, the ratio of electric field enhancement by metal NPs to
the associated thermal effect is a very important factor for efficacy.
Description
article
Keywords
Cancer, Metal nanoparticles, Electromagnetic field, Photothermal therapy, Electric field effect
Citation
Ochoo, L., Migwi, C., & Okumu, J. (2018). Important parameters for optimized metal nanoparticles-aided electromagnetic field (EMF) effect on cancer. Cancer nanotechnology, 9(1), 1-19.