• English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Engineering And Technology
  • RP-Department of Water and Environmental Engineering
  • View Item
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Engineering And Technology
  • RP-Department of Water and Environmental Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance of an Improved Fluidized System for Processing Green Tea

Thumbnail
View/Open
Full text article (375.5Kb)
Date
2016
Author
Lang'at, Nickson Kipng'etich
Thoruwa, Thomas
Abraham, John
Wanyoko, John
Metadata
Show full item record
Abstract
Green tea is made from the top two leaves and buds of a shrub, Camellia sinensis, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg-1 and evaporation rate of 4.272 x 10-4 Kg.m-2.s-1. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs.
URI
http://ir-library.ku.ac.ke/handle/123456789/24898
Collections
  • RP-Department of Water and Environmental Engineering [25]

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback

 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback