• English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Pure and Applied Sciences
  • RP-Department of Zoological Sciences
  • View Item
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Pure and Applied Sciences
  • RP-Department of Zoological Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Insecticidal Decay Effects of Long-Lasting Insecticide Nets and Indoor Residual Spraying on Anopheles Gambiae and Anopheles Arabiensis in Western Kenya

Thumbnail
View/Open
Full Text Article (2.220Mb)
Date
2015
Author
Wanjala, Christine L.
Zhou, Guofa
Mbugi, Jernard
Simbauni, Jemimah A.
Afrane, Yaw A.
Ototo, Ednah
Gesuge, Maxwell
Atieli, Harrysone
Githeko, Andrew K.
Yan, Guiyun
Metadata
Show full item record
Abstract
Background: Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship. Methods: WHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05 %), permethrin (0.75 %) and deltamethrin (0.05 %). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies. Results: WHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3 %), and two sites were moderately resistant to these insecticides (80.4 – 87.2 %). Homozygote kdr mutations of L1014S ranged from 73 to 88 % in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7–31 %) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75 % mortality after six months) and with the age of LLINs (60 % mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6–93.5 % mortality) and new LLINs (77.5–85.0 % mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6–85.0 %) than laboratory reared susceptible strain (100 %). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05). Conclusion: This study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools.
URI
http://ir-library.ku.ac.ke/handle/123456789/21437
Collections
  • RP-Department of Zoological Sciences [238]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Residual Effects of Insecticide-Based Malaria Control Interventions on Malaria Vectors and the Status of Insecticide Resistance in Western Kenya 

    Wanjala, Christine Ludwin (Kenyatta University, 2019-02)
    Malaria is a human disease caused by a sporozoan from the genus Plasmodium, transmitted by a bite of Anopheles mosquitoes. Insecticides remain the major tool for control of malaria vectors in Kenya and therefore the potential ...
  • Thumbnail

    Ownership and Utilization of Insecticide Treated Nets among Primary School Children Following Universal Distribution of Insecticide Treated Nets in Kasipul, Homa-Bay County, Kenya 

    Kamau, Lucy; Omondia, Robert (International Journal of Sciences: Basic and Applied Research (IJSBAR, 2018)
    Insecticide treated nets (ITNs) have become the preferred vector control tool for malaria. Studies indicate that even after universal net distribution, primary school children were significantly less likely to use ITNs ...
  • Thumbnail

    Control of the potato tuber moth (Phthorimaea operculella) (zell) in storage using dust formulated insecticides. 

    Ojero, M. F. O. (Ministry of Agriculture, 1980-01)
    Tubers of potato variety Roslin Gucha were dusted with the followign insecticides:- Pirimiphosmethyl (1 percent, permethrin (1 percent) cypermethrin (0.5 percent), Fenvalarate (1 percent) and etrimfos. The adult moths were ...

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback

 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback