• English
    • français
  • English 
    • English
    • français
  • Login
View Item 
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Pure and Applied Sciences
  • RP-Department of Mathematics
  • View Item
  •   Repository Home
  • Research Papers (RP)
  • RP-School of Pure and Applied Sciences
  • RP-Department of Mathematics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Review of Nanofluids Synthesis, Factors Influencing Their Thermophysical Properties and Applications

Thumbnail
View/Open
Full Text Article (4.956Mb)
Date
2020
Author
Okello, John A.
Mutuku, Winifred N.
Oyem, Anselm O.
Metadata
Show full item record
Abstract
Heat-generating equipment (such as transformers, computer microchips, car engines, nuclear reactors, etc.) requires an efficient cooling mechanism to safeguard them from thermal degradation and to enhance their life span. The use of Nanofluids as opposed to conventional heat transfer fluids in their cooling system is to ensure that they are properly cooled. Nanofluids display superior thermal properties and they are synthesized from nanosized materials such as metals ((Copper (Cu), Silver (Ag), Nickel (Ni), and Gold (Au)), metal oxides (( Aluminum oxide (Al2O3), Cupric oxide (CuO), Magnesium oxide (MgO), Zinc oxide (ZnO), Silica (SiO2), Iron (III) oxide (Fe2O3), and Titania (TiO2)), metal carbide (such as Silicon carbide (SiC)), metal nitride (such as Aluminium nitride (AIN)), or Carbon materials ((Carbon nanotubes (CNTs), Multi-wall carbon nanotubes (MWCNTs), diamond, and graphite)) suspended in base fluids (such as water, ethylene glycol, engine oil, transformer oil, vegetable oil, kerosene, toluene, etc.). The current review explores methods used in the synthesis of nanofluids(One-step method, Two-step method, Solvothermal/Hydrothermal process), factors influencing their thermophysical properties (Particle volume concentration, pH, particle size, particle shape, particle material, base fluid material, temperature, shear rate, and surfactants) and their applications (Heat transfer applications, automotive applications, biomedical applications, electronic applications, Nano-based microbial fuel cells, and Nano-based brake fluids).
URI
http://ir-library.ku.ac.ke/handle/123456789/20644
Collections
  • RP-Department of Mathematics [115]

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback

 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Designed by Library ICT Team copyright © 2017 
Contact Us | Send Feedback