Show simple item record

dc.contributor.authorNzyoka, Festus Kituku
dc.date.accessioned2019-03-20T12:12:35Z
dc.date.available2019-03-20T12:12:35Z
dc.date.issued2018-10
dc.identifier.urihttp://ir-library.ku.ac.ke/handle/123456789/19182
dc.descriptionA Project Submitted In Partial Fulfillment Of The Requirements For The Degree Of Master of Science In Applied Mathematics Of The Kenyatta University. November, 2018en_US
dc.description.abstractIn my study, I investigate the influence of thermophoresis and a constant inclined magnetic field on a fluid flowing over a porous wedge. The inclination is an acute angle to the horizontal axis. The effects of variable prandtl and thermal conductivity, Hartman number, wedge angle parameter, Schmidt’s number, thermophoretic concentration and a constant suction or injection on the fluid flow parameters are studied numerically by the collocation method since the Prandtl number is a function of thermal conductivity and since thermal conductivity varies across the boundary layer, then prandtl number must also vary. This was achieved by describing the considered fluid flow using the equations of continuity, momentum, energy, as well as concentration equations in two dimensions. Further, these nonlinear partial differential equations are transformed into nonlinear ODES using similarity transformations. From these ODES, the numerical solutions have been obtained using the collocation method, which is in turn implemented in MATLAB software via the bvp4c function. The results of the simulation are presented graphically to depict the influence of the above stated parameters on the velocity, temperature and concentration profiles. A tabulation of the effects of these parameters on skin friction, heat transfer and thermophoretic particle deposition is provided. The results of this study reveal that, fluid velocity is increased by increase in magnetic inclination angle, increase in suction and an increase in Hartman number. Fluid temperature is increased by increase in thermal conductivity while fluid particle concentration only increases with increase in concentration parameter.en_US
dc.description.sponsorshipKenyatta Universityen_US
dc.language.isoenen_US
dc.publisherKenyatta Universityen_US
dc.titleInfluence of Inclined Magnetic Field and Thermophoresis on Heat and Mass Transfer Wedge Flow with Variable Thermal Conductivityen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record