Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rutto, Celestine C."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Analysis of a 3D Heat Transfer of Magnetohydrodynamics Cu-H_2 O and Al_2 O_3-H_2 O Nanofluid over an Exponentially Stretching Plate
    (Kenyatta University, 2024-11) Rutto, Celestine C.
    Biomedical sensors, such as eye-imaging systems, and drug delivery mechanisms, heavily rely on magnetohydrodynamic (MHD) flow for effective operation. This study investigates the heat transfer characteristics in MHD nanofluid flow over an exponentially stretching surface, focusing on copper (Cu) and alumina (Al_2 O_3) nanoparticles suspended in water as the base fluid. The governing equations, which include the continuity, momentum, and energy equations, are formulated under the assumptions of steady, incompressible, and laminar flow. These equations are then made dimensionless using a Similarity Transformation, which reduces the partial differential equations (PDEs) to a system of ordinary differential equations (ODEs). The resulting system is numerically solved using the MATLAB package bvp4c, which is designed for solving boundary value problems. The study emphasises the impact of varying the nanoparticle volume fraction on the rate of heat transfer and skin friction. The results reveal that the Cu-water nanofluid exhibits higher heat transfer rates and lower skin friction compared to the Al_2 O_3-water nanofluid, highlighting its potential for enhanced thermal management in biomedical applications.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback