Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Li, Shuying"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Two-Component Signaling System RegAB Represses Pseudomonas Syringae pv. Actinidiae T3SS by Directly Binding to the Promoter of hrpRS
    (Journal of Integrative Agriculture, 2024-09-26) Fulano, Alex Muremi; Zhang, Mengsi; Yang, Mingming; Zhang, Xiaoxue; Li, Shuying; Wang, Shuaiwu; Meng, Yongting; Shen, Xihui; Huang, Li-li; Wang, Yao
    Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a significant threat to the kiwifruit industry. The two-component signaling systems (TCSs) play a crucial role in regulating the virulence of Pseudomonas syringae (P. syringae), yet their specific function in Psa remains largely unclear. In this study, we found that disrupting the TCS RegAB (encoded by Psa_802/Psa_803) resulted in a notable increase in the pathogenicity of Pseudomonas syringae pv. actinidiae M228 (Psa M228) in host plant and hypersensitive reaction (HR) in nonhost plant. Through comparative transcriptome analysis of the Psa M228 wild-type strain and the regA mutant, we identified the pivotal role of RegA/B in controlling various physiological pathways, including the Type III secretion system (T3SS), a key determinant of Psa virulence. Additionally, we discovered that the RegA does have binding sites in the promoter region of the hrpR/S, and the transcriptional level of the hrpR and other T3SS-related genes increased in the regA deletion strain relative to the Psa M228 wild-type. The DNA-binding affinity of RegA, and therefore the repressor function, is enhanced by its phosphorylation. Our findings unveil the function of TCS RegAB and the regulatory mechanism of T3SS by RegAB in Psa, highlighting the diverse functions of the RegAB system.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback