Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Joctum, Aquino"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    YOLO-APD: Enhancing YOLOv8 for Robust Pedestrian Detection on Complex Road Geometries
    (International Journal of Computer Trends and Technology, 2025-06) Joctum, Aquino; Kandiri, John
    - Autonomous vehicle perception systems require robust pedestrian detection, particularly on geometrically complex roadways like Type-S curved surfaces, where standard RGB camera-based methods face limitations. This paper introduces YOLO-APD, a novel deep learning architecture enhancing the YOLOv8 framework specifically for this challenge. YOLO-APD integrates several key architectural modifications: a parameter-free SimAM attention mechanism, computationally efficient C3Ghost modules, a novel SimSPPF module for enhanced multi-scale feature pooling, the Mish activation function for improved optimization, and an Intelligent Gather & Distribute (IGD) module for superior feature fusion in the network's neck. The concept of leveraging vehicle steering dynamics for adaptive region-of-interest processing is also presented. Comprehensive evaluations on a custom CARLA dataset simulating complex scenarios demonstrate that YOLO-APD achieves state-of-the-art detection accuracy, reaching 77.7% mAP@0.5:0.95 and exceptional pedestrian recall exceeding 96%, significantly outperforming baseline models, including YOLOv8. Furthermore, it maintains real-time processing capabilities at 100 FPS, showcasing a superior balance between accuracy and efficiency. Ablation studies validate the synergistic contribution of each integrated component. Evaluation on the KITTI dataset confirms the architecture's potential while highlighting the need for domain adaptation. This research advances the development of highly accurate, efficient, and adaptable perception systems based on cost-effective sensors, contributing to enhanced safety and reliability for autonomous navigation in challenging, less-structured driving environments.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback