Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Awuor, Kennedy Otieno"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effects of Fluid and Reservoir Characteristics on Dimensionless Pressure and Derivative of a Horizontal Well in a Bounded Oil Reservoir with Simultaneous Single Edge and Bottom Water Drive
    (The International Organization of Scientific Research, 2020) Mutili, Peter Mutisya; Adewole, Stephen Ezizanami; Awuor, Kennedy Otieno; Oyoo, Daniel Okang’a
    This study investigates the effects of fluid, wellbore and reservoir characteristics on dimensionless pressure and dimensionless pressure derivatives at late time flow of a horizontal well in a bounded oil reservoir subjected to a single edge and bottom water drive mechanisms. The properties considered in this paper include the dimensionless well length, dimensionless reservoir width and dimensionless pay thickness. The main objective is achieved by using the source and Green’s functions together with Newman product method. Spline functions for interpolation in curve fitting was used to plot the graphs aided by MATLAB program. Results show that the dimensionless pressure increases with decrease in dimensionless reservoir width and pay thickness. The dimensionless pressure derivative potentially collapses to zero when the dimensionless pressure becomes constant. Higher oil production is indicated by larger magnitudes of dimensionless pressure derivatives. Information in this study will assist in designing and completion of horizontal wells in a bounded reservoir for prolonged enhanced oil production.
  • Loading...
    Thumbnail Image
    Item
    A Mathematical Model for Pressure Distribution in a Bounded Oil ReservoirSubject to Single-Edged and Bottom Constant Pressure
    (IOSR Journal of Mathematics, 2020) Mutili, Peter Mutisya; Adewole, Stephen Ezizanami; Awuor, Kennedy Otieno; Oyoo, Daniel Okang‟a
    Well test analysis of a horizontal well is complex and difficult to interpret. Most horizontal well mathematical models assume that horizontal wells are perfectly horizontal and are parallel to the top and bottom boundaries of the reservoir. As part of effort towards correct horizontal well test analysis, the purpose of this study is to develop a mathematical model using source and Green’s functions for a horizontal well completed in an oil reservoir at late time flow period, where the reservoir is bounded by an edge and bottom constant pressure boundaries. The purpose of the derivation is to understand the effects of well completion, well design and reservoir parameters on pressure and pressure derivative behavior of the well at late flow time, when all these external boundaries are presumed to have been felt. If the model is applied for well test analysis therefore information like reservoir natural permeability distribution, actual external boundary types and even the well completion performance will be decidable easily.Dimensionless variables were used to derive throughout the derivations. Results of the derivation show that the dimensionless pressure and dimensionless pressure derivatives increase with increase in dimensionless well length. This means that higher well productivity is achievable with extended well length when the reservoir is surrounded partially by constant pressure boundaries. Furthermore, the models show that higher directional permeabilities would also encourage higher well productivity at late flow time. The dimensionless pressure derivative will, as a result of a constant dimensionless pressure, potentially collapse gradually to zero at the moment the dimensionless pressure begins to exhibit a constant trend. Finally, the dimensionless pressure and dimensionless pressure derivatives vary inversely with the reservoir dimensionless width at late flow time.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback