RP-Department of Water and Environmental Engineering
Permanent URI for this collection
Browse
Browsing RP-Department of Water and Environmental Engineering by Author "Kundu, P. M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Land degradation and hydrological effects in the Mau Forest Complex of Kenya.(2012-03) Olang, L. O.; Kundu, P. M.The Mau Forest Complex is the largest riverine water tower in East Africa. The area is one of the main sources of the major rivers in Kenya. However, in the recent past, the ecological sustenance of the complex has been under severe threat due to massive deforestation and human induced socio-economic activities. There is thus the urgent need for comprehensive and consistent environmental change analysis to support management. In this study, the spatio-temporal land cover changes within the Mau Complex region was assessed through consistent classification of selected multispectral Landsat satellite images. A post-classification procedure employing the maximum-likelihood classifier was employed to discern the changes, and the accuracy of the classifications assessed from ground based information integrating indigenous knowledge obtained through participatory mapping techniques. Preliminary results of the study indicate significant land degradation, especially within the Eastern part of the Mau Forest Complex. Before 1986, the dominant pre-change land cover types were about 75% of forests, 12% of woodlands and 13% of farms. By 1989, the landscape had changed tremendously to about 60 % of forest and woodland and 40 % of agriculture and built-up area. Hydrologically, these changes have not only impaired the ability of the area to cleanse runoff based processes, but also amplified soil erosion and flooding processes leading to degradation of streams, lakes and other water bodies served by the complex. From the existing signatures, the Mau Forest Complex can be classified as highly vulnerable, considering the long term consequences of the degradation on the sustainability of the existing and important water resources.Item Land Degradation of the Mau Forest Complex in Eastern Africa: A Review for Management and Restoration Planning(InTech, 2011-11-04) Kundu, P. M.; Olang, L. O.The Mau Forest Complex is the largest closed-canopy montane ecosystem in Eastern Africa. It encompasses seven forest blocks within the Mau Narok, Maasai Mau, Eastern Mau, Western Mau, Southern Mau, South West Mau and Transmara regions. The area is thus the largest water tower in the region, being the main catchment area for 12 rivers draining into Lake Baringo, Lake Nakuru, Lake Turkana, Lake Natron and the Trans-boundary Lake Victoria (Kundu et al., 2008; Olang & Fürst, 2011). However, in the past three decades or so, the Mau Forest Complex (MFC) has undergone significant land use changes due to increased human population demanding land for settlement and subsistence agriculture. The encroachment has led to drastic and considerable land fragmentation, deforestation of the headwater catchments and destruction of wetlands previously existing within the fertile upstream parts. Today, the effects of the anthropogenic activities are slowly taking toll as is evident from the diminishing river discharges during periods of low flows, and deterioration of river water qualities through pollution from point and non-point sources (Kenya Forests Working Group [KFWG], 2001; Baldyga et al., 2007). Augmented by the adverse effects of climate change and variability, the dwindling land and water resources has given rise to insecurity and conflicts associated with competition for the limited resources. It is hence becoming urgently important that renewed efforts are focused on this region to avail better information for appropriate planning and decision support. Such a process will nonetheless, require an integrated characterization of the changing land and water flow regimes, and their concerned socio-economic effects on resource allocation and distribution (Krhoda, 1988; King, et al., 1999). Assessing the impacts of the environmental changes on water flow regimes generally require provision of time series meteorological, hydrological and land use datasets. However, like in a majority the developing countries, the MFC does not have good data infrastructure for monitoring purposes (Corey et al., 2007; Kundu et al., 2008). A majority of research studies in the area www.intechopen.com Environmental Monitoring 246 have relied on low resolution land cover datasets, including approximate physically-based procedures to understand the space and time surface alterations. Renewed efforts are thus underway in the MFC at present in order to avail high resolution information to be used for updating the existing databases with a view of improving future forecasts for restoration management as shown in Figure 1. Datasets from relevant research organization such as the World Agro-forestry Centre (ICRAF), Regional Centre for Mapping of Resources for Development (RCMRD), Regional Disaster Management Center of Excellence (RDMCOE) and IGAD – Climate Prediction and Application Centre (ICPAC) are hence being harmonized for use in evaluating the environmental effects of spatial changes, especially within hotspot regions of the complex. Cost effective computer-based techniques, which can efficiently analyze diverse physically-based variables are also under consideration to enhance the application of appropriate distributed-based management interventions (Kundu, 2007; Olang, 2009).