Oyem, Anselm O.Mutuku, WinifredEdogbanya, Helen O.Oke, SamuelGarbas, Babangida B.2021-05-172021-05-1720212408516220485170http://ir-library.ku.ac.ke/handle/123456789/22150An Article Published in FUW Trends in Science & Technology JournalA study on incompressible, steady magnetohydrodynamic (MHD) stagnation point flow of an electrically conducting fluid over a flat plate with variable thermal diffusivity and Newtonian heating has been considered. The governing partial differential equations were transformed using suitable similarity variables to couple nonlinear differential equations. The transformed equations are solved using the Runge-Kutta fourth order scheme with the shooting technique method. The effects of the various dimensionless flow parameters are presented in tables and graphs in terms of velocity and temperature profiles. Numerical computations for skin friction coefficient and Nusselt number are done. It was observed that thermal radiation parameter decreases the rate of heat transfer on the surface but increases in skin-friction coefficient while, increase in the viscosity and thermal diffusivity variation parameter increases both the skin-friction coefficient and rate of heat transfer. The results are in conformity with existing resultsenBody forceBrinkmann numberDiffusivityFluid flowSkin frictionNewtonian Heating on MHD Stagnation-Point Flow over a Flat PlateArticle