Show simple item record

dc.contributor.authorKamuti, I.N.
dc.contributor.authorKibet, S. K.
dc.contributor.authorKerich, G.
dc.contributor.authorKimutai, A.
dc.date.accessioned2014-01-21T13:52:34Z
dc.date.available2014-01-21T13:52:34Z
dc.date.issued2012-08
dc.identifier.citationAfrican Journal of Mathematics and Computer Science Research Vol.5(10) , pp. 173-175 , August 2012en_US
dc.identifier.issn2006-9731
dc.identifier.urihttp://ir-library.ku.ac.ke/handle/123456789/8773
dc.descriptionDOI: 10.5897/AJMCSR12.008en_US
dc.description.abstractIn this paper, we investigated some properties associated with the action of symmetric group Sn (n≤7) acting on X(3). If Gx is the stabilizer of the lengths of the orbits of Gx on X are called sub-degrees and the numbers of orbits are called ranks. Ranks and sub-degrees of symmetric groups Sn (n=1, 2, ----) acting on 2-elements subsets from the set X= (1, 2, ---, n) have been calculated by Higman (1970). He showed that the rank is 3 and the sub-degrees are. Therefore, we extend these calculations to the specific symmetric groups Sn (n≤7) acting on X (3).en_US
dc.language.isoenen_US
dc.publisherAfrican Journal of Mathematics and Computer Science Researchen_US
dc.subjectRanksen_US
dc.subjectsub-degreesen_US
dc.subjectsuborbitsen_US
dc.subjectprimitivityen_US
dc.titleProperties of the symmetric groups Sn (n≤7) acting on unordered triplesen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record