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DEFINITION OF OPERATIONAL TERMS 

 

Absorbance: The quantity of the ratio of absorbed light by a sample surface over 

incident light.  

Calibration: A statistical model relating an independent laboratory test of a set 

of samples to the intensity of the light absorbance at different 

wavelengths. 

Correlation: Correlation is a statistical technique, which can show whether and 

how strongly pairs of variables are related.  

Indicators:        Simple metrics to indicate general soil fertility level.  

Infrared:  Electromagnetic radiation of a wavelength longer than that of 

visible light, but shorter than that of radio waves. Infrared radiation 

spans three orders of magnitude and has wavelengths between 

approximately 750 nm and 1 mm.  

Metrics: A system of parameters or ways of quantitative and periodic 

assessment of a process that is to be measured, along with the 

procedures to carry out such measurement and the procedures for 

the interpretation of the assessment.  

Model Validation: The process of testing how well a calibration model predicts  

                               target values on a set of independent samples taken from the  

                               same population.  

Multicollinearity: A statistical term for the existence of a high degree of linear  

                             correlation amongst two or more explanatory variables in a  

                             regression model. This makes it difficult to separate the effects  

                             of them on the dependant variable.  

Peak:                A peak means the wavelength of radiation where a sample absorbs.  

Reflectance:    The ratio of reflected light from a sample surface to the incident 

light on a surface  
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Reflectance spectroscopy: The study of light as a function of wavelength that has 

been reflected or scattered from a solid, liquid or 

gas. 

Spectroscopy:   The theoretical study of the interaction between electromagnetic 

                         radiation, or light and matter used for the understanding of the  

                         structure of matter and for qualitative and quantitative analyses. 

Spectrum:       The spectrum of an object is the frequency range of electromagnetic  

                         radiation that it emits, reflects, or transmits. 
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ABSTRACT 

Soil degradation in Kenya has environmental and economic impacts. Large area 

assessments are needed to quantify and diagnose problems of soil fertility and 

environmental degradation and target sustainable land management interventions, 

such as agroforestry, and to measure impacts of interventions. Near-infrared 

reflectance spectroscopy (NIRS) is a low cost, rapid and robust method for 

characterizing soil condition. The World Agroforestry Centre (ICRAF) has 

compiled an extensive spectral library of several thousand soil samples from 

Kenya. However, soil test data of properties determined using wet chemistry is 

available for only a subset of samples in the database because the methods are too 

expensive to measure on large numbers of samples. In addition it is tedious to 

develop separate individual calibrations for each soil property and region. Soil 

spectra integrate information on a number of soil physical and chemical 

components and it is against this background, that this study was carried out to 

derive integrated spectral indictors of soil condition for Kenya based on near 

infrared spectra. The specific objectives were to summarize the main variation in 

reflectance spectra in the soil samples into simple metrics, summarize the main 

variation in the soil chemical and physical properties and relate the spectral 

metrics to the individual soil chemical and physical properties and their combined 

principal components. Eight hundred and forty three soil samples (0-20 and 0-

45cm depths) from different parts of Kenya that had complete physical and 

chemical data were randomly selected. The soil properties tested were organic 

carbon, pH, exchangeable Ca and Mg, extractable P and K, sand and clay content. 

Soil spectra were recorded on these samples using a Fourier Transform infrared 

spectrometer. The absorbance peak heights of the three principal spectral 

absorption features after baseline correction were proposed as the basis for the 

spectral condition index. The soil properties were related to the absorbance peak 

heights using Partial Least Squares Regression (PLS) regression. A second set of 

relationships was developed by relating the soil properties to the full spectrum 

using the Bruker Quant 2 method, which is also based on PLS but uses all the 

wavebands. The peak heights displayed higher correlation with soil properties 

after baseline correction - Continuum Removal (CR) as compared to before CR. 

The peak heights predicted exchangeable Ca which is a key soil fertility parameter 

moderately well, with calibration and cross-validated r
2
=0.60. Sand, exchangeable 

K and extractable P however, had the poorest correlations with the spectral peak 

data. The full spectrum (use of Quant 2 method) provided effective predictions for 

the individual soil properties: ExCa (r
2 

=0.86), ExMg (r
2 

=0.74) and pH (r
2 

=0.61). 

The method was also most robust in predicting the first principal component of the 

soil properties(r 
2
=0.76). Better models to predict soil condition from spectral 

metrics are obtained by using the full wavelength range, as opposed to restricting 

the models to the use of the three peak regions (using the PLS method), using 

basic peak height and width information related to the key absorption features. 

The study showed that the full spectrum method was most robust in developing 
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spectral indicators of soil condition in Kenya based on the first principal 

component of the soil conditions. In conclusion, the soils in Kenya are highly 

variable in distribution, types and condition and near infrared spectroscopy has an 

important role to play in assessment of soil condition by enabling more intensive 

soil sampling schemes by virtue of the simple, rapid and cheap nature of the 

analytical method. The technique can assist farmers to carry out frequent analysis 

to determine whether their farming activities are degrading or when giving 

recommendations on how to improve depleted soils and boost agricultural 

productivity. On-going research on the use of the technique in Kenya and its 

applications in environmental management should facilitate the transfer of this 

knowledge from the laboratory to the landowners, farmers, governments and other 

resource managers for more effective decision making. Based on the findings of 

this study, further research could examine ways of classifying spectra into groups 

and schemes based on full spectra as an alternative pathway for identifying simple 

soil fertility spectral indicators. This would help to capture the complexity in the 

shapes of the absorption features, while simplifying the complexity in the spectra. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Background 

Strategies to prevent soil degradation are critical for sustainable development, 

particularly in agriculture. Soil degradation has environmental and economic 

impacts at scales ranging from the field level to national levels where soil nutrient 

depletion, degraded soil structure and lost organic matter affect farm livelihoods 

and watershed effects level. Several studies have documented the significance of 

erosion in soil degradation throughout Sub-Saharan Africa (SSA) at these varied 

scales, and given the minimal use of soil amendments by rural farmers, which has 

profound implications on sustained regional agricultural production (Shepherd and 

Walsh, 2004). Though some local success in controlling and reversing soil 

degradation has been documented, the soil resource continues to decline 

alarmingly in the region (Cohen et al., 2006). 

 

Cohen et al. (2006) estimated that soil erosion losses in Kenya are equal in 

magnitude to national electricity production or agricultural exports (equivalent to 

$ 390 million annually or 3.8% of Gross Domestic Product (GDP).For example 

the densely populated Nyando District in Western Kenya, soil erosion costs were 

several fold higher than in neighboring districts (Kericho, Kisumu), indicating 

deeply marginalized rural farmers. The principal causes of erosion include 

devegetation (deforestation, clearance of woody vegetation, unprotected 

farmland), overgrazing and overuse of extensive areas of fragile lands on both hill 

slopes and plains.  

 

Soil fertility decline involves the closely interlinked soil chemical, physical and 

biological degradation. For example, after converting forest to crop land, reduced 

litter inputs and soil tillage lead to reduced soil organic matter, which in turn leads 

to decreased soil nutrient supply and soil structural deterioration. Soil structural 
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deterioration leads to increased run-off and erosion, which causes further loss of 

organic matter and exchange surfaces associated with finer soil particles. As soil 

nutrients levels decline, vegetation is reduced and nutrient loss through leaching is 

exacerbated.. Reduced vegetation cover also exposes the soil to increased erosion. 

This is a vicious cycle that can lead to sudden switches from fertile to degraded 

soil states. To reflect these combined closely interlinked processes, the term ‘soil 

condition’ is preferred to ‘soil fertility’ (Shepherd and Walsh, 2004). 

 

One of the biggest challenges for managing soil degradation is the lack of 

empirical data on soil condition and trend of degradation (Shepherd and Walsh, 

2007). Large area surveys are required to establish baselines of current soil 

condition to target interventions and assess their impact on the improvement of 

soil condition. However, conventional analysis of soil properties is time-

consuming and expensive. This prohibits analysis of the large number of samples 

required in large area surveys and monitoring programmes. In addition, national 

programmes in sub-Saharan Africa are struggling to maintain functional soil and 

plant analytical laboratories and maintain the supply of required chemicals (Swift 

and Shepherd, 2007). Near infrared spectroscopy (NIRS) has shown promise as a 

rapid, low cost and reliable method for assessment of soil properties (Brown, et 

al., 2006; Shepherd and Walsh, 2002; 2004). The method requires minimal sample 

preparation, is non-destructive, and requires no chemicals. NIR technology may 

provide a sustainable way for national programmes to provide reliable soil and 

plant analyses at low cost. 

 

Infrared (IR) spectroscopy employs the infrared part of the electromagnetic 

spectrum to identify a compound and to investigate the composition of a sample. It 

provides precise information on soil conditions more cheaply and rapidly than the 

traditional analyses that uses costly chemicals. The IR technique uses just light, in 

a non-destructive analysis of soil and plant materials. Working from a digital scan, 

a ‘reflectance fingerprint’ that can be used to identify multiple soil properties is 

obtained.  
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In Kenya, large-area diagnostic surveillance of soil condition using IR is expected 

to increase the efficiency of scaling up soil and crop improvement practices by 

improving both the targeting of interventions as well as impact monitoring.  

 

1.2 Statement of the Problem 

The World Agroforestry Centre has compiled an extensive near infrared spectral 

library of several thousand soil samples from Kenya, including characterization of 

the entire Kenya Soil Survey archives(World Agroforestry Centre,2006) However, 

soil test data (soil properties determined using wet chemistry) is available for only 

a subset of samples from the spectral library.  

The cost of acquiring further wet chemistry data to be able to establish calibrations 

between individual soil tests and infrared spectra for different regions or soil types 

is high, and costs $50 a sample as opposed to 50cents through the use of IR data. 

There is a further problem with standardization and benchmarking with different 

laboratories using different soil test methods and with quality control both within 

and among laboratories. In Africa, national soil testing laboratories are closing 

down at a time when they should be gearing up to meet development challenges 

(Shepherd and Walsh, 2002).There is however new opportunity to use IR as an 

intervention method for soil testing in these laboratories. 

 

At the same time, the large projected increases in population levels, coupled with 

the increased economic growth associated with development, will result in 

massively increased demand on ecosystems in developing countries over the next 

several decades, threatening environmental sustainability (MDG Goal 7) 

(Shepherd and Walsh, 2007). Measures aiming at the enhancement of soil fertility 

therefore obviously need to be based on a more precise characterization of both 

the soil and the socio-economic conditions in the country concerned (Barrett et al., 

2002).  
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The current laboratory soil assessment situation relies largely on expert opinion to 

extrapolate information on soil constraints based on very few sampling locations 

(Shepherd and Walsh, 2002). There is need for large area assessment and 

monitoring of soil properties to understand human impacts on the soil resource 

base and reliably guide sustainable development policy. However, the high cost of 

soil analysis currently makes such large studies infeasible (Shepherd and Walsh, 

2005).  

Walsh (unpublished) has developed a soil condition indicator for Western Kenya 

using Lake Victoria sediment as a standard, and has shown preliminary promise 

for use in other regions.  Further work is required to develop simple spectral 

indicators of soil fertility that could be generally applied in more widely in Kenya 

and in the tropics.  

 

Rapid and cost effective characterization methods of soil condition are therefore 

needed for the screening and completion of soil surveys (Brown et al, 

2006).Ideally, generalizable spectral indicators of soil fertility could be found that 

could be interpreted in terms of multivariate soil properties. 

 

1.3 Justification of the study 

Measurement of soil physical, chemical and biological properties, especially over 

large areas, is time consuming and expensive, and as a result the sampling 

strategies adopted are less than ideal. IR technology offers solution to this. The 

analysis of multiple constituents of soil condition can be made rapidly in a single 

operation using IR technology (400 samples can be processed in a day by a single 

operator) and with minimal sample preparation (Martens and Naes, 1989). IR is 

therefore low-cost (savings of at least 100 foldof normal laboratory costs are 

easily achievable). IR could be used as a basis for providing recommendations on 

how to improve depleted soils and boost agricultural productivity. IR analysis is 

non-destructive and produces no chemical wastes, and thus reduces environmental 

pollution from the soil science laboratory. 
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Another area in which IR can be used is in fertilizer recommendations. For 

example, current fertilizer recommendations in Kenya are broad based and were 

developed using old data (1980’s) and need to be revised to reflect changes. This 

requires rapid, cheap and reliable method of analysis.  

 

Until now, the absence of tools for rapid screening of soil and plant health has 

limited the completion of soil and plant nutrition surveys. The ability to analyze 

large numbers of soil samples from landscapes allows uncertainties in the 

estimates of soil condition to be expressed in quantitative terms. In Kenya, large-

area diagnostic surveillance will increase the efficiency of scaling up soil and crop 

improvement practices by improving both the targeting of interventions as well as 

impact monitoring. This is because land use in developing countries is changing 

so rapidly, soil conditions are in constant flux, which greatly limits the value of 

one-off surveys.  

 

The IR technology has the capacity to considerably expand national fertility 

mapping capabilities. Tests have shown that IR analysis can be effectively used in 

conjunction with GPS and satellite sensing to produce inexpensive maps 

pinpointing areas with soil nutritional problems. The combination of IR 

spectroscopy and geographic positioning systems provide one of the most 

powerful modern tools available for agricultural and environmental monitoring 

and analysis (Shepherd and Walsh, 2007). The method allows many georeferenced 

soil samples to be characterized from an area, and this permits soil constraints to 

be calibrated to satellite imagery and mapped out over large areas (Vagen et al., 

2006). The ability to analyze large numbers of geo-referenced samples also 

facilitates digital soil mapping by calibration of soil properties to satellite imagery. 

Also to greatly benefit from the technology are the development community, 

private sector and governments that are in interested in carrying out 

Environmental Impact Assessments of projects that could affect soil quality.  
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Generally applicable calibration libraries still need to be developed to relate 

standard soil properties and soil functions to NIR spectral data. Calibrations 

developed in one region may not hold up in another region and so there is still 

considerable investment required to build calibration libraries. Development of 

simpler, indicative spectral indicators of soil condition and fertility can be used in 

rapid diagnostic surveys and are a quantitative, evidence based approach to 

agriculture and environmental management in Kenya. This would bring about 

considerable savings in time and cost. 

 

1.4 Research Questions 

The study was guided by the following research questions: 

1. Are there simple metrics that can summarize the main variation in 

reflectance spectra in the soil samples? 

2. What variation exists in the chemical and physical properties of the soils in 

the soil library and are some properties closely inter-related? 

3. Are there relationships of these metrics with the main variation in soil 

chemical and physical properties? 

 

1.5 Objectives of the Study 

The overall objective of the study was to develop a simple, generalizable indicator 

or set of indicators of soil condition for Kenya based on near infrared spectra. The 

specific objectives using an existing Kenya soil database were to: 

1. Compute simple metrics summarizing the main variation in reflectance 

spectra in the soil samples based on height and width of absorption 

features and mean reflectance.  

2. Summarize the main variation in soil chemical and physical properties in 

the soil library.  

3. Relate the spectral metrics to the specific soil chemical and physical 

properties and their combined principal components.  
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.0 Introduction 

This chapter gives a general overview of previous work done in Sub-Saharan 

Africa in assessing soil condition using conventional methods and infrared 

spectroscopy, in relation to the problems of soil infertility, food insecurity and 

environmental degradation. It is divided into 6 sections as follows; the first two 

sections (2.1 and 2.2) address the nature of soils and agriculture and the resultant 

land and soil fertility degradation occasioned by population pressure, poverty and 

unsustainable farming practices. Section 2.3 deals with soil fertility evaluation in 

Sub-Saharan Africa. Section 2.4 spells out the physical and chemical analysis and 

infrared spectroscopy ways of assessing soil condition. The last two sections (2.5 

and 2.6) show the application of Near Infrared Spectroscopy (NIRS) in soil 

condition diagnosis and how the application of the technique is important for 

better environmental and agricultural management. 

2.1 Nature of soils and agriculture 

A key measure of the long-term productive capacity of an agro ecosystem is the 

condition of its soil (Okeyo, 2006). Soils play a key role in sustaining many 

ecosystem services which include biomass production, carbon sequestration, 

habitat provision, water filtration, waste absorption and breakdown (Swift and 

Shepherd, 2007). Both, natural weather processes and human management 

practices can both affect soil quality. Sustaining soil productivity requires that 

soil-degrading pressures be balanced with soil-conserving practices (World 

Resource Institute, 2002). 

Key soil nutrients in the soil have different importance in plant growth and food 

sustainability. Soil pH characterizes the chemical environment of the soil and may 

be used as a guide to suitability of soils for various pasture and crop species 
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(Hazelton and Murphy, 2007). Cation exchange capacity is the capacity of the soil 

to hold and exchange cations. The cations in the soil include exCa, exMg and 

exK.CEC is a major controlling agent of stability of soil structure, nutrient 

availability of plant growth, soil pH and the soil’s reaction to fertilizers and other 

ameliorants (Brady and Weil, 1996). Phosphorus is an essential constituent of 

numerous substances involved in biochemical reactions including photosynthesis 

and respiration (Shepherd and Walsh, 2004). 

Total nitrogen measures the total amount of nitrogen present in the soil, much of 

which is held in organic matter and is not immediately available to plants. A 

measure of carbon in the soil helps determine the rate of organic decay, the level 

of organic matter, and the amount of nitrogen available to plants (Brady and Weil, 

1996).The size of mineral particles in soil including clay, sand and silt is critical to 

understanding soil behaviour and management (Dent and Young, 1981).  

During the last decade, food security was not a global priority, but studies such as 

the 2020 Vision and the World Food Summit have shown that food security is a 

major global concern for this century. About 55% of Africa’s land is unsuitable 

for agriculture and by 1990, soil degradation was estimated to have affected 500 

million hectares, i.e. 17% of Africa’s land (UNEP 1997). Only 11% of the 

continent, spread over many countries, has high quality soil that can be effectively 

managed to sustain more than double its current population (Eswaran et al.1997). 

Most of the remaining usable land is of medium or low potential, with at least one 

major constraint for agriculture. This is largely a result of continuing rapid 

population growth, the highest of any region in the world, and rapid land depletion 

(Sanchez et al., 1997). While per capita food availability in the rest of the world 

has increased significantly over the past 45 years, the situation in sub-Saharan 

Africa (SSA) has improved only slightly (Eswaran et al., 1997). In contrast to 

sustained increases in other parts of the developing world, per capita food 

production continues to decrease in Africa (Sanchez et al., 1997). 
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Poor soils and human poverty go hand-in-hand, especially in the tropics (Misiko, 

2007). More than 70% of Africa’s poor live in rural areas, a pattern that is 

expected to continue for many years (Shepherd and Walsh, 2007). Since the rural 

poor derive most of their livelihood from agriculture, increasing agricultural 

productivity is essential for significant poverty reduction (Swift, et al., 2004). 

Massive increases (for example, 6% per annum) in agricultural productivity in 

developing countries are required if the world is to achieve the targets it has set 

itself towards meeting the Millennium development goals (MDGs) to eradicate 

extreme poverty and hunger (Goal 1) and to improve human health (Goals 4,5 and 

6) (UN Millennium Project, 2005). The need for rapid agricultural development 

for poverty alleviation is particularly pronounced in Sub-Saharan Africa, where 

for example, there has been no increase in fertilizer use and crop yields per hectare 

or per capita Gross Domestic Product (GDP) over the past 30 years, whereas 

population has more than doubled over the same period and is expected to double 

again over the next 30 years (UN Millennium Project, 2005). 

According to the World Bank Agriculture for Development Report (2008), 75 

percent of the world’s poor live in rural areas in developing countries, where only 

a mere 4 percent of official development assistance goes to agriculture. The report 

therefore calls for greater investment in agriculture in developing countries. The 

report warns that the sector must be placed at the center of the development 

agenda if the goals of halving extreme poverty and hunger by 2015 are to be 

realized. Further, agricultural and rural sectors have suffered from neglect and 

underinvestment over the past 20 years. The World Bank Group is advocating a 

new dynamic ‘agriculture for development’ agenda. According to the Report, 

GDP growth originating in agriculture is about four times more effective in 

reducing poverty for the poorest people, than GDP growth originating outside the 

sector.   This can benefit the estimated 900 million rural people in the developing 

world who live on less than $1 a day, most of whom are engaged in agriculture.  

African agriculture has performed dismally, in sharp contrast to Asia and Latin 

America, regions that benefited from the Green Revolution, (Sanchez, 2002). 
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Some African states and developed countries are now considering programmes 

that give high priority to restoring agricultural development in Africa. Paramount 

among them includes the Alliance for a Green Revolution in Africa (AGRA).  

Agriculture remains the most important economic activity in Kenya, although less 

than 8% of the land is used for crop and feed production. Less than 20% of the 

land is suitable for cultivation, of which only 12% is classified as high potential 

(adequate rainfall) agricultural land and about 8% is medium potential land. The 

rest of the land is arid or semiarid (Britannica online, 2007). Several reasons have 

been advanced to explain the decline of food production in Kenya. They are 

natural disasters (flood, drought), a high incidence of pests and diseases and 

degradation of soil resource base characterized by a decline in soil organic matter 

and nutrient availability (Macharia, 2004). Agricultural production in low 

potential areas of Kenya is constrained by declining soil fertility and unpredictable 

and erratic rainfall. One of the challenges faced by those involved in rural 

development is improving soil fertility in low potential areas (Kinyanjui et al., 

2000). 

Stagnation of agricultural development in many sub-Saharan African regions is 

commonly attributed to the limited adoption of new and improved technologies 

(Misiko, 2007). By fundamental root cause, it means that no matter how 

effectively other conditions are remedied, per capita food production in Africa will 

continue to decrease unless soil-fertility depletion is effectively addressed. 

However, soil fertility in Africa has seldom been considered a critical issue by the 

development community, who until very recently has focused primarily on other 

biophysical constraints such as soil erosion, droughts, and the need for improved 

crop germplasm (Sanchez et al., 1997).  

The agriculture and environment agendas are inseparable. Therefore managing the 

connections between agriculture, natural resource conservation, and the 

environment must become an integral part of using agriculture for development in 
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order to achieve more sustainable agricultural production systems (World Bank 

Development Report, 2008). 

To lift Africa out of poverty, large increases in the scale of agricultural research 

and extension and environmental assessment will be required, both in the private 

and public sector (Shepherd and Walsh, 2007).  It is becoming increasingly 

recognized that developing countries need to draw on the latest scientific and 

technological advances available to accelerate their agricultural development, but 

these technologies need to be robust enough to be used under basic conditions and 

to be applied at scale (Shepherd and Walsh, 2002).   

2.2 Land and soil fertility degradation  

The continued threat to the world’s land resources is exacerbated by the need to 

reduce poverty and unsustainable farming practices (Sanchez et al., 1997). Little 

reliable data is available on the extent of land degradation in Africa. However, 

anyone who has traveled through the continent has observed that land degradation 

is widespread and serious. The presence of gullies and sand dunes, degraded 

forests and grazing lands are obvious, although the effects of sheet erosion and 

declining soil fertility are less noticeable.  

The degradation of soil fertility, specifically the capacity of soil to support 

agricultural production, has been identified as one of the main causes of Africa’s 

agricultural failure. Beyond this, African farmers face other degradation processes 

such as erosion, salinization and acidification (Swift et al., 2004). Soil fertility 

depletion in smallholder farms is now recognized as the biophysical root cause of 

declining food security in this region (Sanchez and Leakey, 1997). Degradation of 

soil quality poses a serious threat to human welfare and the environment (Jones 

and Doran, 1996; Trimble and Crosson, 2000). A particular challenge is the high 

level of variation in the properties of African soils. This variation is often highest 

at the smallest scale, a farmer’s field (Swift et al., 2004). The magnitude of 

nutrient depletion in Africa’s agricultural land is enormous. Sanchez et al. (1997) 
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quotes calculations based on Smaling’s seminal works that indicate that an 

average of 660 kg N ha
-1

, 75 kg P ha
-1

 and 450 kg K ha
-1

 has been lost during the 

last 30years from about 200 million ha of cultivated land in 37 African countries, 

excluding South Africa. These figures represent the balance between nutrient 

inputs as fertilizer, manure, atmospheric deposition, biological N2 fixation 

(BNF),and sedimentation, and nutrient outputs as harvested products, crop 

residual removals, leaching, gaseous losses, surface runoff, and erosion(Cohen et 

al., 2006). These values are the aggregate of a wide variety of land-use systems, 

crops, and agro ecological zones in each country (Stoorvogel & Smaling, 1990). 

Though some local success in controlling and reversing soil degradation has been 

documented, the soil resource continues to decline regionally, at alarming rates in 

some areas (Cohen et al., 2006). It has been recognized that the problem of soil 

fertility degradation is a microcosm of that of land degradation as a whole. 

Therefore, reversing soil-fertility depletion has been identified as a requirement 

for increasing per capita agricultural production. (Sanchez et al., 1997). In 

scientific research, soil fertility is broadly recognized. Low soil fertility as a 

fundamental bottleneck for food security in smallholder farms in Africa (Misiko, 

2007). For instance, the Soil Science Society of America (2001), in a special issue 

of the society’s journal (No.58), introduces soil fertility as necessary to sustain 

agriculture on a continent threatened with high population growth. Swift et al. 

(2004) states:’ the soil fertility problem remains intractable largely because of the 

failure to deal with the issue in a sufficiently holistic way. Soil fertility decline is 

not a simple problem. In ecological parlance it is a slow variable, which interacts 

over time with a wide range of other biological and socioeconomic constraints to 

sustainable agro ecosystem management. Tackling soil fertility issues thus 

requires a long-term perspective and a holistic approach that integrates biological 

and social elements.’  

Increasing pressures on agricultural land have resulted in much higher nutrient 

outflows and the subsequent breakdown of many traditional soil-fertility 

maintenance strategies. Such strategies have not been replaced by an effective 
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fertilizer supply and distribution system (Sanchez et al., 1997). Soil fertility 

decline is associated with several simultaneous degradation processes feeding on 

each other to produce a downward spiral in productivity and environmental 

quality. For example, the combined effects of tillage and insufficient applications 

of nutrient and organic matter inevitably lead to a decline in soil organic matter 

(Swift et al., 2004). This reduces the retention of essential plant nutrients, 

breaking down soil physical structure and in turn diminishing water infiltration 

and the water storage capacity of the soil.  

High nutrient depletion is due to high outputs of nutrients in harvested products 

and erosion and also in the relatively high inherent fertility of the soils (Smaling et 

al., 1997). Soil-fertility depletion leads to decline in crop productivity, decreased 

food security, exacerbates several environmental problems at the national and 

global scales, increased government expenditure on famine relief and increased 

poverty (Sanchez et al., 1997).  

Several studies have documented the significance of erosion in soil functional 

degradation throughout SSA at varied scales, which, given minimal use of soil 

amendments by rural farmers, has profound implications on sustained regional 

agricultural production (Smaling et al., 1997). In general, the factors that cause 

environmental degradation, such as soil erosion are well known. However, the 

magnitude and contribution of each of these factors, in specific situations is rarely 

known with any accuracy (Okeyo, 2006). 

There is evidence of increased erosion occurring in some African rivers and lakes 

(Sanchez et al., 1997), including Lake Victoria, where erosion from surrounding 

nutrient-depleted lands is widespread. Further, the loss of topsoil organic carbon 

associated with soil nutrient depletion results in additional CO2 emissions to the 

atmosphere from decreasing soil and plant C stocks, (Sanchez, 1995). Therefore 

apart from low food production, inadequate soil management has serious 

consequences for other natural resources essential to African livelihoods and 

development (Swift et al., 2004). 
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In Kenya, like many other Sub-Saharan countries, soil fertility and hence 

productivity is declining at an alarming rate because areas of high agricultural 

potential are densely populated and in most cases farm holdings are less than one 

hectare (Okeyo, 2006). Declining soil fertility is a therefore a serious concern in 

Kenya. Since the soil resource has not kept its productive capability over time, 

farmers have witnessed low and declining yields. For example, a long-term trial in 

Kabete, Kenya, indicates that a previously fertile, red soil (Oxic Rhodudalf) lost 

about 1 ton ha
-1

 of soil organic N and 100kg ha
-1

 of soil organic P during 18 years 

of continuous maize-common bean rotation in the absence of nutrient inputs 

(Sanchez et al., 1997). Further, for most cereal and legume crops grown in the 

country, nutrients removed in the harvested parts are not returned to the fields 

(Macharia, 2004). Many smallholder farmers in the country have not yet realized 

the value of using green manure and compost to maintain and improve soil fertility 

(KARI, 2001). The consequences of these actions for smallholder farms, 

particularly in the last two decades, have been a progressive decline in yields and 

diminishing soil fertility. 

Sustaining soil productivity requires that soil-degrading pressures be balanced 

with soil-conserving practices (Okeyo, 2006). One example of a natural resource 

management approach deals with a problem that was invariably identified by 

farmers in characterization and diagnosis exercises throughout the sub-humid and 

semi-arid tropics of Africa (Sanchez, 1999). According to Shepherd and Walsh 

(2002), agricultural development in the tropics will require tens of thousands of 

field trials to develop recommendations for improved crop and soil management 

practices, supported by millions of soil analyses. This is not practical and methods 

for repeatable, rapid assessments for soil diagnosis are recommended. 

2.3 Assessment of soil condition 

Most agricultural and environmental plans require soil analysis,
 
or at least should 

require analysis to better implement any
 
change (Shepherd and Walsh, 2002). The 

purpose of a soil fertility evaluation laboratory is to provide rapid diagnostic 
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services to farmers. In the tropics, few effective soil fertility evaluation methods 

exist in Africa and Southeast Asia (Sanchez, 1976). Typically, soil samples are 

analyzed, application
 
rates calculated, and the fertility interpretations are made 

(Nanni and Demattê, 2006).
 
 The most widespread methods are based on soil 

testing, missing element techniques, simple fertilizer trials, and frequently a 

combination of these (Sanchez, 1976). Soil samples are normally composites 

consisting of 15 to 20
 
individual samples for an area of 12 to 20 ha.

  

Conventional assessments of soil quality rely on local calibration of soil 

performance to soil laboratory tests, but these analyses are expensive and large 

numbers of samples are required to adequately characterize spatial variability 

(Jones and Doran, 1996). Soil data on which the diagnosis is based are 

dangerously deficient. The combination of laborious methods and a shortage of 

scientific and technical expertise means that diagnostic analysis has been limited 

geographically and has rarely been repeated (Swift. et al., 2004).  

In Brazil, there are legislative regulations that limit the
 
use of chemical products in 

the laboratory especially for methods
 

that produce environmental pollutants 

(Nanni and Demattê, 2006). It is important to develop low cost, highly efficient, 

new methods
 
of soil analyses that produce less environmental pollutants.

 
Standard 

procedures for measuring soil properties are complex. According to (Nanni and 

Demattê, 2006), the costs of soil
 
analyses with precision agriculture systems are 

very expensive
 
when compared with more traditional methods.  

Thus, more affordable
 
alternatives are required and these can be achieved through

 

the use of new technologies to estimate soil attributes.
 

Furthermore, better 

practical methods that can rapidly
 
estimate soil properties are needed to improve 

quantitative
 
assessments of land management problems (Shepherd and Walsh, 

2002). Many studies have been devoted to unraveling major factors constraining 

tropical soil fertility in order to achieve sustainable agriculture (Misiko, 2007). 

Sensing soil quality builds national capacity in soil health surveillance, which will 

directly contribute to priority areas in the Action Plan of The Environment 
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Initiative of the New Partnership for Africa’s Development (NEPAD) and the UN 

Millennium Project (Shepherd and Walsh, 2005). 

 

Soil fertility evaluation is the process by which nutritional problems are diagnosed 

and fertilizer recommendations made (Sanchez, 1976). Soil fertility is not a static 

feature. On the contrary, it changes constantly and its direction (accumulation or 

depletion) is determined by the interplay between physical, chemical, biological 

and anthropogenic processes (Smaling et al., 1997). The detailed information 

necessary to conduct management and operational control tasks is thus rarely 

available to resource managers and hence they cannot determine the best way to 

address specific issues (Okeyo, 2006). Until now, the absence of tools for rapid 

screening of soil and plant health and the cost has limited the completion of soil 

and plant nutrition surveys (Shepherd and Walsh, 2002). 

 

People depend on soil to provide a wide range of essential ‘ecosystem services’. 

Therefore apart from low food production, inadequate soil management has 

serious consequences for other natural resources essential to African livelihoods 

and development (Swift and Shepherd, 2007). The evaluation approach therefore 

advocates for careful management of soil fertility aspects that optimize crop 

production potential through incorporation of a wide range of adaptable soil 

management principles, practices and options for productive and sustainable agro 

ecosystems (Okeyo, 2006).The global threat of environmental problems cannot be 

reliably assessed without methods for rapid assessment of soil quality (Shepherd 

and Walsh, 2001). Lack of measurable attributes that reflect the capacity of soil to 

perform specific production or environmental functions makes broad scale 

quantitative assessment difficult (Trimble and Crosson, 2000).  

 

The Round Table of Experts, which met in Nairobi in February 2006 proposed an 

approach that aims at providing reliable data on the condition of the soil-resource 

base and degradation trends; spatially explicit early warning of emerging soil-

related problems and a scenario analysis; and reliable ex post information on 
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impacts of large-area soil management interventions (Shepherd and Walsh, 2007). 

This diagnostic approach calls for application of the latest scientific and 

technological advances, including remote sensing and GIS; infrared spectroscopy 

for rapid soil analysis; new multivariate statistical tools for handling hierarchical 

data; simulation and spatial modeling; and environmental accounting and 

economic valuation (Swift and Shepherd, 2007). 

 

A rapid and economical soil analytical
 
technique is therefore needed before 

farmers and land managers will be
 
able to fully utilize soil testing as an aid in 

precision farming
 
and both assessment and management of soil quality. Finally, 

while it is clear that soil analyses are necessary,
 
they are still expensive, time-

consuming, and often create undesirable
 
environmental waste products (Nanni and 

Demattê, 2006).
  

  

2.4 Near Infrared spectroscopy and soil diagnosis 

Rapid and cost effective characterization methods of soil condition are needed for 

the screening and completion of soil surveys (Brown et al., 2006). Advances in 

infrared spectroscopy and chemometrics have created new possibilities for rapid 

non-destructive assessment of soil constituents, but their routine application is 

limited (Reeves and McCarty, 2000). The ability to analyze large numbers of soil 

samples from landscapes allows uncertainties in the estimates of soil condition to 

be expressed in quantitative terms (Sanchez et al., 1997). 

The use of precision agriculture, which required rapid assessment
 
of soil attributes, 

began in the 1980s
 
and has become increasingly more popular in the 1990s (Nanni 

and Demattê, 2006).
 
Since the mid-1980s, developments in

 
instrument technology 

and chemometrics (the application of mathematical
 
and statistical techniques to 

chemical data) have led to the
 
increased use of spectroscopy in the laboratory and 

field and
 
from space platforms, notably in geological studies (Shepherd and 

Walsh, 2002). 
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The composition of organic matter is ultimately reflected in the types of bonds 

between the atoms or groups of atoms that make up tissues (Shepherd and Walsh, 

2004). The signatures result from electronic transitions
 
of atoms and vibrational 

stretching and bending of structural
 
groups of atoms that form molecules or 

crystals. Spectral signatures of materials
 

are defined by their reflectance or 

absorbance, as a function
 

of wavelength in the electromagnetic spectrum 

(Shepherd and Walsh, 2002), and they provide a rapid prediction of soil physical, 

chemical and biological properties (Okeyo, 2006). 

Infrared (IR) spectroscopy meets the requirement of a rapid, reliable and low cost 

screening tool for many agricultural and environmental applications and could 

play a major role in enabling diagnostic surveillance approaches in developing 

countries,(Shepherd and Walsh, 2007). 

Another great opportunity IR spectroscopy has provided is the ability to relate 

high density, georeferenced measurements of soil condition to remote sensing 

(RS) data (Vlek, 1995). In fact, Nanni and Demattê, 2006 emphasized the 

importance of RS
 
to estimate CEC, moisture, and soil nutrients as the basis for

 

site-specific management, even though satellite results were
 
still not readily 

available.
 
 

Correlations between the different bands of the electromagnetic
 
spectra and RS 

data have led to a better understanding of complex
 
soil components. These RS 

studies are the basis for new paradigms
 
of nondestructive methods to quantify soil 

attributes (Nanni and Demattê, 2006).Shepherd and Walsh (2002)
 
developed a 

scheme to use a spectral library as a fast
 
and nondestructive estimation of soil 

attributes based on analyses
 
of diffusion reflectance spectroscopy to facilitate soil 

RS analysis. According to Nanni and Demattê (2006), "estimation of soil variables
 

from spectral data used in soil mapping is an important potential
 
application of 

multispectral remote sensing." 
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Although infrared (IR) spectroscopy has so far had limited use in poorer 

developing countries, it has potential to make a huge contribution in helping these 

countries accelerate agricultural development while safeguarding the environment 

(Shepherd and Walsh, 2007). 

 

Near-infrared reflectance spectroscopy (NIRS) is a nondestructive analytical
 

technique for studying interactions between incident light and
 
a material's surface 

(Chang et al, 2001). Near infrared (NIR) spectroscopy, is one of the most cost-

effective and reproducible analytical techniques available for the 21
st
 century 

(Shepherd and Walsh, 2007). A wide range of materials can be analyzed for 

multiple constituents in seconds with no sample preparation.  

 

When a sample of organic matter is irradiated, the bonds continually vibrate, 

which causes stretching and bending. This in turn causes a type of wave motion 

within the bond at a frequency that is characteristic of the functional group. The 

frequencies of the incident light that match the frequencies of the vibrational 

waves are absorbed whereas other frequencies are reflected or transmitted (Stuart, 

2004). According to Chang et al, 2001, near-infrared spectra are dominated by 

weak overtones and combinations
 
of fundamental vibrational bands for H-C, H-N, 

and H-O bonds
 
from the mid-infrared region. Near infrared radiation (750-2500 

nm) is absorbed mainly by C-H, N-H and O-H bonds (Osborne et al., 1993), 

which are the primary constituents of all organic compounds. The chemical 

constituents of the material determine the nature and number of bonds present and 

therefore the wavelengths and amount of light that is absorbed. Therefore, the 

spectrum that is absorbed from the sample contains detail on the chemical 

composition of that material (Shenk et al., 1992; Shenk and Westerhaus, 1994). 

 

In addition to the chemistry of
 
a material, near-infrared spectra are also influenced 

by the
 
physical structure of a material. The size and shape of the

 
particles, the 

voids between particles, and the arrangement
 
of particles affect the length of the 
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light transmission passing
 
through a sample and thereby influence reflectance 

(Chang et al, 2001).
  

 

Near Infrared Spectroscopy (NIRS)
 
is widely used in industry due to its simplicity, 

rapidness,
 
and the need for little or no sample preparation. Several studies have 

focused on measuring soil properties using
 

NIRS. Soil parameters used by 

Stenberg et al. (1995) included clay content, cation exchange capacity, base 

saturation, and pH. According to the study, cost savings of 70% were achieved 

when the technique was compared to the most appropriate sampling strategy 

involving only wet chemistry analysis. 

NIRS relies on applying statistical models that test the intensity of the relationship 

between a particular absorbance and an independent laboratory test of different 

material (Shenk et al., 1992; Shenk and Westerhaus, 1994). Recent research has 

demonstrated the ability of reflectance
 
spectroscopy to provide nondestructive 

rapid prediction of soil
 

physical, chemical, and biological properties in the 

laboratory (Shepherd and Walsh, 2002). Chang et al.2001 concluded that 

reflectance spectra
 
are strongly affected by soil moisture content, organic matter

 

content, and particle size. A potential application of NIRS for soil biologists is its 

usefulness in selecting soil samples from populations to maximize the variation in 

particular soil properties in a minimum subset of samples from the population 

(Stenberg et al., 1995). This is a powerful application of NIRS, as it allows one to 

select samples over the full range of variation in any one or combinations of 

parameters. 

More recently, Shepherd and Walsh (2002) developed a scheme for the 

development and use of soil spectral libraries for rapid estimation of soil 

properties based on analysis with this technique, using a library of over 1000 

archived topsoils from eastern and southern Africa. Using a multivariate 

regression approach they calibrated 10 different soil properties to soil reflectance.
 
 

Its real power is in providing prevalence data on soil problems, a basis for 

quantifying risk factors and a baseline for change detection (Shepherd and Walsh, 
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2007). Near infrared analysis is thus an indirect or secondary method that 

estimates chemical composition by comparing spectra with samples of known 

composition (Shenk et al., 1992; Shenk and Westerhaus, 1994). This procedure is 

known as calibration. This evidence-based approach to soil survey is a departure 

from conventional soil survey approaches where policies and management 

recommendations are made for whole soil mapping units on the basis of a limited 

number of observations of soil properties in each mapping unit (Shepherd and 

Walsh, 2007).  

 

Most NIR spectroscopy work on soils has focused on the prediction of individual 

soil properties, whereas the ultimate objective is often to predict soil functional 

capacity, the ability of soil to perform functions (such as support plant growth, 

nutrient cycling, hydrological regulation and resistance to erosion) or some 

integrated measure of soil degradation (Shepherd and Walsh, 2007). Most NIRS 

studies related to prediction of soil properties were
 
limited in one way or another 

due to small sample size, less
 
diversity in soil types, and/or because only a few soil 

properties
 
were tested.  

2.5 Application of NIR spectroscopy  

While visible (350-700 nm), near infrared (700-2500 nm) and mid-infrared (MIR) 

(2500-25,000 nm) have been used in soil studies, NIR technology is well 

commercially developed and less technically demanding than MIR (Shepherd and 

Walsh, 2004). Further, NIR is well suited to field portability, remote sensing, 

copes better with moist samples and can deal with larger bulk soil samples 

because of its more intense sources and sensitive detectors (Merry and Janik, 

2001). This study used near infrared (NIR) in the range 1250-2500 nm (4000-8000 

cm
-1

).  

NIR spectroscopy has the potential for making schemes for monitoring soil 

condition over large areas practical. There are several advantages of IR 

spectroscopy technology for agricultural and environmental laboratories in 
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developing countries. First, a laboratory can meet multiple analytical needs with 

just one instrument, which is simple to operate and maintain, robust and requires 

no chemicals; this reduces the need for infrastructure and advanced technical 

capacity and minimizes the risk of breakdown. Second, the method is highly 

repeatable and also far more reproducible than wet chemistry methods. This is an 

important advantage as there is currently no standardization of the methods used 

among different wet chemistry laboratories, which diminishes the potential value 

of data collected in any one laboratory. Third, the low cost and high throughput 

capability of IR spectroscopy enables objective, evidence-based approaches to 

agricultural and environmental management to be employed, which can speed 

reliable learning. (Shepherd and Walsh, 2007). Further, the rapid, low cost and 

reproducible nature of NIR spectroscopy measurements will enable large samples 

of resources and materials to be analyzed. As a result, statistical information will 

be built up for key indicators. 

NIRS has therefore shown promise as a rapid low cost and reliable method for 

rapid assessment of soil properties (Brown, et al., 2006; Shepherd and Walsh, 

2002; 2004). It provides precise information on soil conditions more cheaply and 

is cost effective in time and finances. Therefore, robust NIR-based soil condition 

indices have potential to provide valuable information on soil constraints that 

could be transmitted to farmers via extension agents and other farm service 

providers. 

Emphasis in NIR spectroscopy studies will be on development of spectral 

indicators that are interpretable in terms of suites of functional properties and 

symptoms, with less emphasis on development of calibrations for individual 

constituents. Associations between spectral indicators and functions will be made 

using probabilistic approaches that capture uncertainties in the associations, learn 

the associations from the data, allow continuous updating of data, permit inference 

in any direction and allow entry of partial evidence (Shepherd and Walsh, 2007). 
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2.6 Literature gaps identified 

The ability to acquire high density spatial data on the quality of resources and 

materials linked to case definitions for specific problems, will lead to an emphasis 

on interpretation of measurements with respect to important functions and 

problems and interpolation of these results.  

There has been some success with reflectance spectroscopy
 
for sensing of soil 

organic matter in the field, and for the discrimination of major soil types
 
from 

satellite multi-spectral and aircraft hyper spectral data (Shepherd and Walsh, 

2002). Despite these indications of the potential of
 
the technique, there are few 

examples and therefore gaps in literature on the application of
 

reflectance 

spectroscopy for non-destructive assessment of soils
.
 

Although geological spectral
 
libraries exist that include soil mineral spectra, there 

are few examples of soil spectral libraries that
 
include a wide diversity of soils 

with information on physical,
 
chemical, and biological properties (Chang et al., 

2001). In particular there are literature gaps in the development of soil spectral 

libraries for application
 
to risk-based approaches to soil evaluation that explicitly

 

consider predictions and interpretations of soil
 
properties. 

Further, there exists a gap in the application of NIRS in the broad quantification of 

soil variability and the interpretation of this with respect to important problems 

and interpolation of the results for agricultural and environmental management. 

This approach constitutes a departure from current approaches in agricultural and 

environmental management, which tend to focus on detailed measurements of few 

samples and rely heavily on the use of expert opinion and extrapolation of results. 
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CHAPTER THREE 

 

RESEARCH METHODOLOGY 

 

3.1 Study design 

World Agroforestry Centre (ICRAF)’s soil library has data for approximately 

80,000 soil samples, including 1,109 data for samples from archives of the Kenya 

Soil Survey. The library soils consists of topsoil (0-20 or 0-45 cm
 
depth) samples 

taken from multilocation experiments, on-farm
 
trials, and soil surveys conducted 

in Eastern Africa
 
during 1993 through 1999 for which the physical and chemical 

soil properties had
 
been analyzed by the soil laboratory of ICRAF (Shepherd and 

Walsh, 2002).  However, many of the samples do not have complete and even data 

on the soil chemical and physical properties. The approach in this study started 

with examination of variation in spectral shapes, particularly the characteristics of 

the principal absorption features, and then interpreting this information in terms of 

implications for the different soil properties. In this study, 843 samples from 

different locations in Kenya with complete reference data were selected from the 

ICRAF soil library and matched with their spectra. 

 

3.2 Sample selection 

A master set of soil samples from Kenya stored in the ICRAF soil laboratory was 

identified for this study. The samples had complete data on soil physical and 

chemical properties (Table 3.1). Random stratified sampling method was used to 

select 843 soil samples which had earlier been collected from; Siaya, Yala, 

Amboseli, Central Kenya, Vihiga, Shinyalu, Teso and other parts of Kenya to be 

used in the study. Samples were from ongoing projects and studies that ICRAF 

has been involved in. These include many multilocation experiments, on farm 

trials and soil surveys. ICRAF also considers these areas as hot spots in the 

country in terms of soil degradation. 
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Soils had been taken from a wide variety of landscape positions, parent materials,
 

and land uses. Although the soils were not formally classified
 
on-site, they were 

sampled from areas broadly mapped as soil taxonomy orders; vertisols, andisols, 

aridsols, alfisols, ultisols, histosols, nitisols. 

 

Each soil sample was analyzed for physical and chemical properties as shown in 

Table 3.1. This raw data was then transformed to present an equally probable 

distribution of soil variables for analysis. The transformations used for each soil 

property are also indicated in the table. 

  

Table 3.1: Soil physical and chemical properties analyzed in the study 

 

Soil property Units Transformations used  

pH water (1:2.5 soil: water 

ratio)  

 Ln  

Exchangeable Ca cmolc kg
-1

 Sqrt  

Exchangeable Mg cmolc kg
-1

 Ln  

Exchangeable K cmolc kg
-1

 Ln  

Extractable P mg kg
-1

 Ln  

Organic C g kg
-1

 Ln  

Clay g kg
-1

 Sqrt  

Sand g kg
-1

 None  

 

3.3 Sample preparation 

The soils were spread on a plastic tray and placed in the solar dryer for about 1 to 

2 days until air-dry. The maximum drying temperature was 40°C. Air-dried
 
soils 

were used for convenience and to minimize effects of variation
 
in soil moisture on 

reflectance (Ben-Dor et al., 1999). Each soil sample was mixed thoroughly and 

spread on a plastic sheet to dry. Using a rolling pin, the sample was crushed and 

passed through a 2mm sieve. Plant material and pieces of gravel were removed. 

Anything that remained on the sieve was discarded.  
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The sieved soil samples were labeled with the researcher’s identification number 

and stored at room temperature and stored at room temperature for further 

analysis. The label consisted of a unique and consistent number based on batch 

number and laboratory identification number and was logged on sample 

forms/sheets. 

 

3.4 Soil physical and chemical properties 

Each of these soil samples had complete data on the physical and chemical 

properties to be used in the study. All laboratory soil analyses were conducted by 

the ICRAF soil laboratory using standard wet-chemistry methods.  

 

3.4.1 Methods for determining soil physical/chemical properties 

Soil samples were analyzed using
 
standard methods widely used for tropical soils 

(Shepherd and Walsh, 2002). Methods for each component include; 

 Sand and Clay content – The particle size analysis of a soil estimates the 

percentage sand, silt and clay contents of the soil and is often reported as 

percentage by weight of oven-dry and organic matter-free soil (Okalebo et 

al., 2002). After dispersing the soil into the individual particles (sand 2.00 

– 0.05 mm, silt 0.05-0.002 mm, clay<0.002 mm), the hydrometer method 

for silt and clay measurements was used which relies on the effects of 

particle size on the differential settling velocities within a water column. 

The settling velocity is proportional to the square of the radius of the 

particle. Percentage of sand was then deduced from the silt and clay 

amounts. 

 pH - The pH of the soil solution controls the form and solubility of many 

plant nutrients. Soil pH was
 
determined in water using a 1:2.5 soil/solution 

ratio whereby 50 ml deionised water was added to 20±0.1g soil. The pH of 

the soil suspension was measured. The electro conductivity of the 

supernatant liquid was measured to identify soils that are potentially saline. 

 Exchangeable Calcium, Potassium and Magnesium - Soil samples
 
were 

extracted with an excess of 1 M NH4OAc solution such that the maximum 
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exchange occurs between the NH4 and the cations originally occupying 

exchange sites on the soil surface. The amount of exchangeable K was 

determined by flame photometry,
 

and analyzed by atomic absorption 

spectrometry for exchangeable Ca and Mg (Okalebo et al., 2002).  

 Extractable Phosphorus - Samples were extracted with 0.5 M NaHCO3
 
+ 

0.01 M EDTA (pH 8.5, modified Olsen) using a 1:10 soil/solution
 
ratio and 

analyzed colorimetrically (molybdenum blue) for extractable P (ISFEIP, 

1972;
 
Yurimaguas Experiment Station Staff, 1989). The Olsen method is 

suitable for a wide range of soil types and pH values and by precipitation 

reactions; there is an increase in P concentration in the solution, which is 

then measured. 

 Organic Carbon – Through the dichromate oxidation method, after 

complete oxidation from the heat of solution and external heating, the 

unused or residual aqueous potassium dichromate (K2Cr2O7) (in oxidation) 

was titrated against ferrous ammonium sulphate. The used potassium 

dichromate, the difference between added and residual K2Cr2O7, gave a 

measure of organic C content in the soil. An additional method is provided 

where the amount of chromic Cr
3+

 ions formed during the oxidation 

process was determined colorimetrically to give total amount of organic 

carbon present in soil samples. The method was however suitable for soils 

with higher carbon contents (e.g.>2%). 

- Another method that was used to measure the organic carbon is the dry 

combustion method. It involved conversion of inorganic carbon to 

dissolved CO2, and purging this from the sample. The remaining (organic) 

carbon was then oxidized at a high temperature to CO2 which can be 

detected by a sensor and directly correlated to total organic carbon (TOC) 

content. 

 

 

 

 



 43 

3.4.2 Statistical analysis of soil chemical properties 

All the 8 soil properties (Table 3.1) in each of the 843 soil samples were first 

examined for normality of frequency distribution and transformed where 

necessary to a normal distribution. Soil nutrient concentration data is often 

characterized by a high proportion of low values and a small proportion of very 

high values, leading to a frequency distribution that is skewed to the left, and 

requires a square-root or log transform to correct the skew and obtain a normal 

probability distribution. 

 

The Unscrambler software (ref.) was used in the transformation where the square 

root or log functions were used to transform the raw data to a normal distribution. 

Determination of whether to use the square root or log functions was based on the 

extent of the left or right skewness. The function, which gave the smaller extent of 

skeweness in units, was used. Sand was however normally distributed and there 

was therefore no need for transformation of its raw data. 

 

3.5 NIR spectral metrics 

The approach in this study started with examination of variation in spectral shapes, 

particularly the characteristics of the principal absorption features, and then 

interpreting this information in terms of implications for different soil properties.  

 

3.5.1 Scanning  

Each sample was properly mixed with a spatula to create homogeneity before 

loading it on the dish. The standard size Duran glass petridishes were used. These 

samples were packed
 
in 12 mm deep, 55-mm diameter Duran glass petridishes. 

The petridishes were half-filled with the 2-mm air-dried sieved soil samples. Then 

the soil was mixed well and then several spatula-fulls were taken to half-fill the 

dish ensuring a flat soil surface. This was in order to get a representative sample.  

 

The supplied forms were used to enter the laboratory identification number (Lab 

ID) and each petridish number is matched to the Lab ID. After loading all the 
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dishes, they were arranged sequentially then scanned using the Fourier-Transform 

near-infrared spectrometer (Plate 3.1) and spectra recorded for each soil sample. 

After scanning a batch of samples, the quality of spectra was checked by 

switching to Bruker OPUS software (ref.) and reading all the spectra that have just 

been run. If there were any suspect-looking spectra, these were repeated. 

 

 

 

 

Plate 3.1: Bruker Multipurpose Analyzer (MPA) NIR Spectrometer  

 

Spectra were recorded from 3,585 to 12,493 cm
-1

 at a spectral resolution of 4 cm
-1

, 

gap- filled to 2 cm
-1

. The spectra were then trimmed/ reduced to the range 4,000 to 

8,000 cm
-1

 using the OPUS software for spectral processing. This range on the 

electromagnetic spectrum represented the area having the sharp peaks of 

importance in the study. The OPUS software assists in calibrating and evaluating a 

model. It also analyzes multivariate data. 
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3.5.2 Peak picking  

Peak picking identifies the peaks associated with prominent absorption features in 

a spectrum, their position and the intensity of these peaks. This is important 

because characterization of the spectrum determines the properties of a soil 

sample. 

To do peak picking, the spectra was read into OPUS software. This was achieved 

by using the data table, selecting the spectrum for peak picking, then from the file 

menu in the software Unscrambler, export as ascii file and use the spectrum name 

as the file name when prompted to give the file name to be exported. The process 

was repeated until all the spectra required for peak picking was exported. Once all 

the spectral files were saved as ascii files, they were read at once into OPUS ready 

for peak picking.  

The following methods for absorption feature characterization were tested: 

i. The peak picking routine in OPUS was used to identify peaks (absorption 

features) in the spectra and the peak characteristics measured (absorbance 

intensity, relative intensity, i.e. peak height, peak full width at half-

maximum (FWHM), and wavelength at peak maximum) (Figure 3.1). This 

routine fits a local baseline to the absorption features. Peak picking was 

first done before continuum removal (Figure 3.2). The corresponding 

wavelengths at the peak maximum were classified into absorption wave 

regions, which were used for extracting absorption feature parameters in 

this study. These absorption wave regions contain peaks close to the same 

region of the electromagnetic spectrum. Upto six wave regions were 

identified. 
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Figure 3.1: Spectrum peak and illustration of peak characteristics 
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Figure 3.2: Spectra peaks identified for four different soil samples before  

        Continuum Removal 

 

ii. The peak picking routine was also applied after continuum removal, 

implemented in the Environment for Visualizing Images (ENVI) Version 

4.3 software. Continuum removal is a means of normalizing reflectance 

spectra to allow comparison of individual absorption features from a 

common baseline (Figure 3.3). The continuum is a convex hull hit over the 

top of a spectrum utilizing straight-line segments that connect local spectra 

maxima. The absorbance spectra were first converted to reflectance spectra 

from continuum removal. The spectra are then exported as an ascii file that 

can be read by the software Unscrambler. After appending the spectrum 

names to the imported data table within Unscrambler, the continuum-

removed reflectance spectra was transformed back into absorbance spectra. 

The data table was then transposed so that each column represented a 

spectrum. Up to seven absorption wave regions were identified. 
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Figure 3.3: Spectra peaks identified for three different soil samples after  

Continuum Removal - Comparison of individual absorption        

features from a common baseline 

 

3.5.3 Wave regions 

The peaks on the spectral signatures of each soil sample are associated with the 

principal absorption features. They were classified into wave regions (Table 3.2) 

in which absorption feature parameters were extracted in this study.Waveregions 

are areas containing peaks that are close to each other along the electromagnetic 

spectrum. 
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Table 3.2: Spectral wave regions containing principal absorption features 

Wave region Wave number (cm
-1

)  

1 0-4194  

2 4195-4326  

3 4327-4530  

4 4531-5199  

5 5200-5237  

6 5238-7077  

7 >7077 

 

Wave regions containing spectral peaks that were present in each data set before 

and after continuum removal were identified as Wave regions 3, 5 and 6. The 

other peaks not found within these wave regions were excluded in the study. The 

samples containing the three wave regions were identified and the peaks 

corresponding to these wave regions were therefore the peaks containing the 

principal absorption features of importance in this study. 

 

3.6 Relation between spectral metrics and soil properties 

Soil properties are usually inter-correlated and can be reduced down to a smaller 

number of factors, to reduce the redundancy in the data, using principal 

component analysis. Principal components analysis (PCA) is a technique for 

simplifying a dataset, by reducing multidimensional datasets to lower dimensions 

for analysis while retaining those characteristics of the dataset that contribute most 

to its variance. It involves a mathematical procedure that transforms a number of 

(possibly) correlated variables into a (smaller) number of uncorrelated variables 

called principal components (PC). The first principal component (PC01) accounts 

for as much of the variability in the data as possible, and each succeeding 

component accounts for as much of the remaining variability as possible. Principal 

component analysis is a linear transformation that transforms the data to a new 

coordinate system such that the greatest variance by any projection of the data 



 50 

comes to lie on the first coordinate (PC01), the second greatest variance on the 

second coordinate(PC02), and so on.  

The scores of the fist two principal components of the soil properties usually 

account for more than 70% of the variation in soil properties.  

 

3.6.1 Partial Least Squares regression method – peak region calibration and  

         validation 

Thus the relation between the first two principal components in turn and the 

spectral metrics were investigated using partial least squares (PLS) regression 

method which is a function of the Unscrambler software. These data sets were 

exported to the software and the spectral metrics were plotted against the two 

principal components. Transformed soil data was used in the regression. 

 

PLS regressions were also developed for individual transformed soil variables per 

sample. The individual soil variables were calibrated against the absorbance 

intensity (spectral metrics) of each of the three wave regions per sample. The two 

soil data sets were used - before and after continuum removal. Partial least squares 

statistical method was used because of the high number of variables and the 

multicollinearity in the dataset. The spectral data was the independent factor while 

the physical/chemical soil data formed the predicted variables or the responses. 

 

The results were models per individual soil variable and per PC used. Therefore, 

the calibration and validation determination coefficient (r
2
), root mean squared 

error of calibration(RMSEC) and root mean squared error of prediction(RMSEP) 

were deduced from each model before and after continuum removal and laid out in 

a data set. In addition, the recommended optimal number of principal components 

explaining the distribution of each individual property was indicated against each 

property. 

 

 



 51 

3.6.2 Quant 2 Method - Full spectrum calibration and validation 

The relationship between the soil full spectrum was also investigated against 

individual soil properties. Using Quant 2 statistical method function of OPUS 

software), the full spectra of all the soil samples was correlated with the individual 

soil properties. 50% of the samples were randomly selected as the calibration data 

set while the other 50% was set aside as the validation set for the optimization 

process. The optimization process was carried out to specify the regions on the 

spectra that are important in the calibration and cross validation process. 

 

After optimization, the whole soil data set was thereafter used as the calibration 

set, whereby the full spectra set was calibrated against each soil property. After 

calibration, this Quant 2 method was also able to validate the calibration models 

per soil property. Therefore, resultant were calibration models whose 

determination coefficient (r
2
), Rank and root mean squared error of cross-

validation (RMSECV) was recorded for the cross-validation process. The r
2
 

determined the percentage of variance present in the true component values, which 

is reported in the predicted concentration values. The r
2
 approaches 100% as the 

predicted concentration values approach the true values. The r
2
, Rank and RMSEC 

figures were also recorded for the calibration process.  

 

The relation between the first two principal components in turn and the full spectra 

data was also investigated using this method. The full spectrum data was 

calibrated against soil PC 01 & 02 and the resulting models were validated per 

principal component. The models’ determination coefficient (r
2
), Rank, RMSEC 

and RMSECV were recorded for the cross-validation and calibration processes.  
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CHAPTER FOUR 

 

RESULTS AND DISCUSSION 

 

4.1 Soil physical and chemical properties 

 

4.1.1 Sample characteristics 

A total of 843 samples from various field locations in Kenya were sampled. Table 

4.1 gives a summary of field locations and the distribution of soil samples per 

location. The number of samples represented the total samples that had complete 

soil physical and chemical reference data for each field location. 

 

Table 4.1: Field locations and distribution of soil samples 

Field Location Number of Samples  

Amboseli 19  

Yala 42  

Siaya 44  

Meru South 32  

Central Kenya 22  

Vihiga 32  

Shinyalu 155  

Teso 25  

Others 472  

Total 843  

 

There was high correlation between soil organic carbon (SOC) and non-acidified 

carbon as shown in Figure 4.1. Therefore, through inter-calibration these methods 

were transformed to one method to increase the size of the complete data set. The 

function y=0.3759x + 0.0198 was used to determine the SOC from the different 

methods used.  
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Non-acidified C versus SOC y = 0.3759x + 0.0198

R2 = 0.8797
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Figure 4.1: Non-acidified carbon versus soil organic carbon 

 

4.1.2 Variation in soil physical and chemical properties data 

The soil properties in the 843 soil samples did not have normal distribution and 

using the Unscrambler software, the square root or log functions were used to 

transform the raw data to a normal distribution. The function, which gave the 

smallest result, was used. Sand was however normally distributed and there was 

therefore no need for transformation of its raw data. The quantity of the 

transformed data was much smaller per property than the original soil property 

figures. The range was much lower for each property as compared to the 

untransformed data.  

 

The variability of the data was explained using standard deviation (σ).Extractable 

phosphorus had the greatest change in standard deviation before and after 

transformation (24 before and 1.40 after). Table 4.2 shows the spread of 

distribution of soil physical and chemical data before and after transformation. 
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Table 4.2: Variation of soil data before and after transformation 

Soil properties Mean Before 

Transformation 

Mean after 

Transformation 

Standard 

Deviation 

Before 

Transformation 

Standard 

Deviation 

After 

Transformation  

Clay (g kg
-1

) 34.28 

 

5.72 

 

14.40 1.23  

Sand (g kg
-1

) 42.58 

 

42.58 

 

18.44 18.44  

pH 6.06 

 

1.79 

 

0.85 0.14 

C (g kg
-1

) 4.24 

 

0.24 

 

6.91 1.46  

Extractable 

P(mg kg
-1

) 

9.97 

 

1.16 

 

24.00 1.40  

Exchangeable 

K (cmolc kg
-1

) 

0.49 

 

-1.11 

 

0.56 0.92  

Exchangeable 

Ca (cmolc kg
-1

) 

9.44 

 

2.80 

 

8.53 1.26  

Exchangeable 

Mg (cmolc kg
-

1
) 

2.80 

 

0.67 

 

2.57 0.87 

 

All the properties with the exception of exchangeable Potassium showed a lower 

measure of spread in distribution of the data set after transformation. The standard 

deviation in all the properties is small after normalizing the distribution because 

most of the values in the data set are close to the mean. Normalizing the 

distribution created a higher probability of using all the data in the variables for 

the analysis.  
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 4.2 Near-infrared spectral metrics 

Peak picking routine in OPUS was used to identify peaks (absorption features) in 

the spectra and the peak characteristics measured (absorbance intensity, relative 

intensity, i.e. peak height, peak full width at half-maximum (FWHM), and 

wavelength at peak maximum). 

 

4.2.1 Peaks identified before Continuum Removal 

Peak picking was first done before continuum removal (CR). Between one and 

three peaks were identified per soil spectrum. Figure 4.2 illustrates the number, 

nature of peaks and the corresponding wave numbers identified before CR. 

 

 

Figure 4.2: Near - infrared absorbance spectra and peaks identified for three  

       soil samples before Continuum Removal 

The corresponding wave numbers at the peak maximum were classified into 

absorption wave regions. All the peaks identified in the spectra were therefore 

included in these wave regions. Upto six wave regions were identified (Table 

4.3).There were no peaks identified that fell within wave region 2 
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Table 4.3: Wave regions of soil spectra before Continuum Removal 

Wave region Wave number (cm
-1

) 

1 0-4194  

3 4327-4530 

4 4531-5199  

5 5200-5237 

6 5238-7077 

7 >7077  

 

The peak characteristic parameters differed within the different wave numbers in 

each sample. They also differed from sample to sample and for each sample 

before and after Continuum Removal. For each of the wave numbers (peaks) 

identified the peak characteristics (the absorbance intensity, relative intensity and 

width of the peaks) were tabulated against each peak and sample. The 

characteristics of the peaks identified before continuum removal are shown in 

Table 4.4. 

 

4.2.2 Peaks identified after Continuum Removal 

After CR, the peak picking is done on the spectra from a common baseline unlike 

before Continuum Removal. This is illustrated in Figure 4.3 Hence, this technique 

enables in identifying more peaks that were not visible before CR. Resultantly, 

between one and five peaks were identified for most of the soil samples per 

spectrum. Table 4.4 is an illustration of the seven wave regions that all the peaks 

identified were grouped into.  
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Figure 4.3: Near - infrared absorbance spectra and peaks identified for three  

        soil samples after Continuum Removal 

 

Table 4.4: Wave regions of soil spectra after Continuum Removal 

Wave region Wave number (cm
-1

)  

1 0-4194 

2 4195-4326 

3 4327-4530  

4 4531-5199 

5 5200-5237 

6 5238-7077  

7 >7077  
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Table 4.5 represents the average and range values of the peak characteristics of the 

peaks identified before and after CR. 

 

Table 4.5: Peak characteristics of the soil spectra before and after Continuum  

       Removal 

Peak characteristics Before CR After CR 

Average Range(cm
-1

)  Average Range 

Wave number(cm
-1

) 5586 2660 5581 2999 

Absorbance Intensity 0.50 0.636  0.08 0.294  

Relative Intensity 0.10 0.245  0.08 0.294  

Width 164 223 175 567 

 

The average values of the spectral characteristics are higher after CR in the case of 

the absorbance intensity and width. The average values of the wave numbers are 

almost equal before and after CR. However, the range of the peak wave numbers 

identified after CR increases (2999) as compared to before CR (2660).The ranges 

of the absorbance intensity and width of spectra also increased after CR. This NIR 

technique was able to pick peaks not visible before CR resulting to higher ranges 

in the absorbance intensity and width of spectra. The average and the range of the 

absorbance intensity and the relative intensity are similar respectively, after CR 

because the peaks are picked from a common baseline. 

 

4.3 Relationship between the spectral metrics and soil properties 

Relationships were developed between the soil spectra and the main variation in 

measured soil physical and chemical properties. This was done by calibrating the 

soil spectra against the soil physical and chemical properties resulting to 

calibration models. The robustness of the relationships in predicting soil properties 

was determined by validating the calibration models developed. This is in order to 

determine whether soil spectra can be a representation of the soil condition of an 

area. 
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There are many examples where several predictor variables used in combination 

can give dramatically better results than any of the individual predictors used 

alone. One rich source of such examples is NIR spectroscopy (Naes et al., 2002). 

According to Change et al (2001), soil is a heterogeneous mixture of various 

chemical compounds,
 
and thus a unique spectral response for soil properties is by

 

no means certain. One method of evaluating the spectral response
 
for a soil 

property is to study the relationship between wavelength,
 
optical density, and the 

values of the soil property. 

 

4.3.1 Relationship between the peak regions and the soil variables  

The wave regions containing spectral peaks that were common in each data set in 

the study before and after CR were identified as Wave regions 3, 5 and 6.These 

were the peaks containing the principal absorption features of importance in the 

study. The other peaks not found within these wave regions were excluded in this 

section of the analysis. There were therefore two data sets, before and after CR. 

Resultantly, 210 samples were included in the analysis before CR and 766 samples 

included after CR. The relationships were investigated between the peak regions 

and the individual soil variables as well as the soil principal components.  

 

4.3.1.1 Relationship between the peak regions and the individual soil  

 variables 

The spectral metrics were first plotted against the individual soil variables. These 

data sets were exported to Unscrambler software and the PLS regression method 

was used to calibrate the soil properties against the peak regions. The spectral 

metrics were calibrated against each soil variable before and after continuum 

removal. The results of the relationships that exist between the spectral metrics 

(peak regions) and individual soil variables are illustrated in Table 4.6.   
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4.3.1.2 Relationship between the peak regions and the soil principal  

 components 

The 843 samples in the study have been analyzed and constitute a large dataset of 

soil physical and chemical data. These soil variables are highly collinear with high 

correlations or other near linear relations among them. The explanatory variables 

were compressed onto a few linear combinations of the   original variables before 

regression.  Therefore using PCA, the data set of correlated soil variables was 

reduced to smaller uncorrelated variables called principal components. The first 

two principal components were used in this study whereby the first principal 

component explained 43% of the variability in the data set and the second 

principal component explained 25% of the variability.  

 

The idea behind the partial least squares(PLS) and principal component regression 

(PCR) methods was to find a few linear combinations (components or factors) of 

the original x-values and to use only these linear combinations in the regression 

equation (Martens and Martens, 2001). In this way, irrelevant and unstable 

information was discarded and only the most relevant part of the x-variation is 

used for regression. A further idea behind the PCR method is to remove the factors 

with the least variability from the regression, to avoid instability of the 

predictions. The multicollinearity is therefore solved and more stable and reliable 

regression equations and predictions are obtained.  

 

The spectral metrics were plotted against the soil PC 01 and 02 data. The results 

were correlation models per principal component, before and after continuum 

removal. The models in Figures 4.4(a-d) below are an illustration of relationships 

that existed between the spectral metrics (peak regions) and soil PCA 1 and 2 data 

each plotted before and after CR.   
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Figure: 4.4 (a) Calibration model of spectral peak regions against soil PCA 01 

 before CR 

 

Figure: 4.4 (b) Calibration model of spectral peak regions against soil PCA 01  

    after CR 
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Figure: 4.4 (c) Calibration model of spectral peak regions against soil PCA 02  

    before CR 

 

 

Figure: 4.4 (d) Calibration model of spectral peak regions against soil PCA 02  

    after CR 



 63 

The calibration and validation r
2
, root mean squared error of calibration(RMSEC) 

and root mean squared error of prediction(RMSEP) results were deduced from 

each model in the relationships with individual soil variables as well as soil 

principal component 01 and 02 data, before and after continuum removal. These 

were laid out in the Table 4.6. The calibration and validation r
2 

explained the fit of 

the soil variables against spectral metrics as well as the robustness of these 

relationships in predicting soil properties. In addition, the recommended optimal 

number of principal components explaining the variability/distribution of each 

property was indicated against each property.    

 

 Table: 4.6 Results of the correlations of the individual soil properties and soil  

       principal components with the peak regions of the spectrum  

As shown in the table 4.6 above, by using the individual soil properties, with the 

exception of Sand and ExP, all other soil properties displayed higher correlation 

and better fit with soil spectra after CR as compared to before CR. The effects of 

CR was to increase the number of absorption peaks identified on the spectrum, 

Property 

AFTER CR 

 

BEFORE CR 

Calib. 

r
2
 

Valida. 

r
2
 RMSEC RMSEP 

No. of 

spectra 

PC 

used 

Calib. 

r
2
 

Valida. 

r
2
 RMSEC RMSEP 

No. of 

spectra 

PC 

used  

ExCa 
0.601 0.598 0.798 0.801 2 0.094 0.073 0.636 0.644 1 

pH 
0.343 0.338 0.114 0.114 1 0.318 0.300 0.115 0.117 2 

ExMg 
0.299 0.292 0.716 0.72 2 0.111 0.076 0.69 0.704 2 

C 
0.262 0.225 1.278 1.311 2 0.167 0.141 1.369 1.391 2 

Clay 
0.240 0.234 1.078 1.082 1 0.269 0.233 0.941 0.965 2 

ExK 
0.137 0.132 0.87 0.873 2 0.091 0.069 0.942 0.955 1 

ExP 
0.049 0.042 1.357 1.362 2 0.234 0.206 1.12 1.14 2 

Sand 
0.097 0.093 17.473 17.517 1 0.283 0.260 15.213 15.453 2 

 
          

PC 01 
0.438 0.433 1.394 1.401 2 0.118 0.093 1.264 1.283 2 

PC 02 
0.076 0.066 1.371 1.379 2 0.308 0.285 1.341 1.363 2 
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resulting to more spectral characteristics and information that was available to 

interpret the soil condition based on the soil property variation.  

Therefore, the quality of relationships between spectrum and soil variation 

improved after CR. ExCa which is an important soil property had the highest 

change in correlation after CR (validation r
2
 = 0.073 to r

2
 = 0.598), and was the 

individual soil property having the best fit using this method. Sand, ExK and ExP 

however, had the poorest correlations with the spectral data. In previous studies, 

Janik et al. (1998) also observed poor prediction
 
of bicarbonate-extractable K and 

P with mid-infrared analysis (validation
 
r

2
 < 0.5). There is evidence that the wet 

chemistry methods used to determine the parameters K and P have not been 

effective in extracting these parameters. Using the PCA data, PC 01 displayed 

highest correlation with the spectral data after Continuum Removal (validation r
2
 

= 0.433). PC 01 explained 43% of the total soil data variability and hence model 

had a better fit. It displayed a lower correlation before CR. As in the case of using 

individual soil properties, the model improved after CR of spectral data. PC 02 

however displayed the inverse - a higher correlation before CR (validation r
2
 = 

0.285) as opposed to after CR. 

Selecting the three peak regions omitted other spectral information that was vital 

in explaining the condition of the soil. Consequently, using the three peak regions 

as a method before or after CR did not provide robust relationships that could 

effectively provide means of assessing the soil condition due to the poor 

prediction coefficients (r
2
). 

4.3.2 Relationship between the full NIR spectrum method and the soil 

         variables 

Other workers
 
(e.g., Palacios-Orueta and Ustin, 1998) have found that

 
for the 

purpose of calibrating soil properties to spectral characteristics,
 
it is preferable to 

use information over the entire spectrum,
 
rather than attempting to interpret 

individual absorption features.
 
Soil spectra result from overlapping absorption 
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features of
 
many organic and inorganic components, thus subtle differences

 
in 

spectral shape may provide valuable information about soil
 
properties.  

 

This section describes the investigations of the relationships between the NIR full 

spectrum and the individual soil variables as well as the soil principal components. 

 

4.3.2.1 Relationship between full NIR spectrum method and individual soil  

 variables 

Using Quant 2 statistical method of the OPUS software, the relationship between 

the soil full spectrum was investigated against individual soil properties. Each soil 

property was calibrated against the full spectra. After calibration, this Quant 2 

method was also able to validate the models per individual soil property. Resultant 

were calibration models per soil property whose determination coefficient (r
2
), 

number of principal components of the spectra and RMSEC was recorded for the 

calibration process. This method was able to detect the outliers and bring out the 

best models. The r
2
, Rank and RMSECV figures were also recorded for the cross 

validation process. The r
2
 determined the percentage of variance present in the 

true component values, which is reported in the predicted concentration values. r
2 

approaches 100% as the predicted concentration values approach the true values. 

 

4.3.2.2 Relationship between full NIR spectrum method and soil principal  

 components 

The full spectrum data was also plotted against the first two soil principal 

components in this study. Hence using PLS regression method, using the 

Unscramber software, PC 01 and 02 were calibrated against the soil full spectrum. 

The results were calibration models per principal component. The models in 

Figures 4.5(a-b) show the relationships that exist between the full spectrum and 

soil PC 01 and 02 data.   
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Figure 4.5: (a) Calibration model of soil PCA 01 data against full spectrum  

    region 

 

 

Figure 4.5: (b) Calibration model of soil PCA 02 data against full spectrum  

    region
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Table 4.7 illustrates the calibration and cross-validation results after calibrating 

individual soil properties against full spectrum as well as the soil principal 

components 01 and 02 against full spectrum. The calibration process is used to fit 

the models while the validation process is used to develop models for prediction of 

unknown values of the soil properties.r
2
 is therefore higher in the calibration set as 

opposed to the validation set. 

 

Table: 4.7 Results of the correlations of the full spectrum with the individual 

       soil properties and soil principal components 

Property Calibration 

r
2
 (%) 

Validation 

r
2
 (%) 

RMSEC RMSECV No. of 

spectra 

principal 

components  

ExCa 87.12 86.44 0.442 0.451 9 

ExMg 75.1 73.69 0.403 0.412 9 

pH 62.48 60.53 0.0809 0.0825 8 

C 61.59 57.09 0.9 0.946 8 

Sand 57.57 55.43 11.9 12.2 10 

Clay 55.46 53.87 0.816 0.826 8 

ExP 47.83 31.70 1.0072 1.160 N/A 

ExK 45.96 43.58 0.647 0.657 9 

      

PC 01 0.80 0.757 0.838 0.916 2 

PC 02 0.702 0.584 0.772 0.916 2 

 

The ability of NIRS to predict values of soil properties can
 
be grouped into three 

categories;
 
Category A includes properties with measured

 
versus predicted r

2
 

values between 0.80 and 1.00 based on validation models. Category B includes 

soil properties with
 
measured versus predicted r

2
 values between 0.50 and 0.80. 

Category C consists of values r
2
 < 0.50 (Chang et al, 2001). The authors believe

 

that prediction of soil properties in Category B can be improved
 
by using different 
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calibration strategies, but properties in
 
Category C may not be reliably predicted 

using NIRS. 

 

As illustrated in the results in Table 4.7 above, using the relationship with 

individual soil data, root mean squared error of cross validation was larger for 

values of Sand (12.2) and ExP (1.16). Good calibrations (r
2
 > 0.70), hence better 

model fits were obtained for soil exchangeable Ca and exchangeable Mg. Values 

of r
2
 close to 100% indicate that NIR is almost as good as the laboratory technique 

against which it is calibrated. Sand (r
2
=0.55),

 
ExK (r

2
=0.44) and ExP (r

2
=0.32) 

however, had the poorest correlations with the spectral data. The same results 

were realized in the previous method of using the three wave regions which gave 

results for Sand (r
2
=0.09),

 
ExK (r

2
=0.13) and ExP (r

2
=0.04). As in the case with 

the peak region method, the NIR method was not good in predicting the soil ExP, 

which is the second most limiting nutrient of crop productivity in Sub Saharan 

Africa. The calibration models with the largest
 
r

2
 values for generalized cross-

validation for a given attribute
 
also resulted in the largest validation r

2
 values, 

indicating
 
that the cross-validation was effective

 
in safeguarding against over-

fitting. 

 

It is apparent that the r
2
 values improved after using the full spectrum method. For 

instance; ExCa - 0.86 with full spectrum and 0.60 with the peak regions; ExMg - 

0.74 with full spectrum and 0.29 with the peak regions; Sand - 0.55 and 0.09 with 

the peak regions; pH – 0.61 and 0.34 with the peak regions. However, using the 

full spectrum method of calibrating the soil properties against full spectrum and 

validating the results as opposed to using the three wave regions did not 

effectively provide all the indicators of the soil condition, except when predicting 

ExCa(r
2 
=0.86), ExMg(r

2 
=0.74) and pH(r

2 
=0.61).  

 

Using the PCA data, PC 01 displayed a higher correlation with the full spectral 

data (validation r
2
 = 0.757), as compared to PC 02(0.584). PC01 therefore had a 

better fit. Using all the methods illustrated, PC01 displayed the best model and fit 
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by using the full spectrum method. Consequently, by relying on the inter-

correlation among all the soil variables and fitting the soil principal components to 

the full spectra, the NIR analytical method was robust in developing effective 

indicators of soil condition.  

 

These results can then be used as a basis for further research on ways of 

developing soil classification schemes based on soil spectra to enable diagnose 

large area soil nutrient health in a repeatable manner. The ability to rapidly and 

cheaply diagnose soil condition through NIRS will enable farmers and related 

institutions to monitor soil condition and develop appropriate farm based soil 

nutrient management programs.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the main findings of the study in four sections as 

follows; Sections 5.1 summarizes the main findings of the study, while, Section 

5.2 outlines some of the conclusions that can be drawn from the study. 

Recommendations of the study are stated in Section 5.3, whereas areas for further 

research work conclude the chapter in section 5.4 

5.1 Main findings 

In this study, spectral peaks to be used in the analysis were identified before and 

after CR. It was found that more peaks (upto five peaks) were identified after CR. 

The peaks were classified into seven wave regions. Spectra were therefore used 

for correlation both before and after CR. 

The soil physical and chemical data set was large and highly collinear. The PCA 

method was able to reduce the dataset into fewer uncorrelated variables. A large 

part of the variability in the data set was explained by two principal components, 

which were used for the analysis. The first principal component accounted for 

43% of the variability and the second component for 25% of the variability. This 

is reported in the method of calibration between the spectral metrics and the soil 

PC01 and PC02 data before and after continuum removal. Using PC01, validation 

r
2
=0.433 after continuum removal, and using PC02, validation  r

2
=0.25 before 

continuum removal. 

The effectiveness of NIRS technique in developing spectral indicators of 

multivariate soil properties in this study varied between the use of full spectrum 

and the use of the spectral peak regions. In the case of the PLS method (using 

spectral wave regions), better correlations were found after CR. The soil properties 

generally displayed higher correlations after CR. However in general, the wave 

region method gave poor correlations with the soil data and could not develop 
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promising indicators of soil condition. ExCa was best predicted(r 
2
 = 0.598) by 

this method. All other properties were poorly predicted (validation
 
r

2
 < 0.5). Soil 

ExK, ExP and sand had the poorest correlations with the spectral data.  

The use of Quant 2 method (using full spectrum), provided better predictions of 

individual soil properties as opposed to the use of the three peak regions, using the 

PLS method. Better models were developed using the Quant 2 method than the 

regression method and it gave higher calibration and validation r 
2 

values for all 

the models developed. E.g.; ExCa - 0.86 with full spectrum and 0.60 with the peak 

regions; Clay – 0.54 and 0.23 

This signified the full spectrum method’s higher prediction capability. However; 

this method was only able to predict effectively, ExCa(r 
2
 =0.86), ExMg(r 

2
 =0.74) 

and pH(r 
2
 =0.61), Clay (r2 =0.54), Sand (r2 =0.55) and C (r2=0.57) properties. 

As was observed in the PLS method, ExK(r 
2
=0.44) and ExP (r 

2
=0.32) had the 

poorest correlations with the spectral data. The full spectrum method further gave 

higher predictions when the soil properties were inter-correlated into PC 01 and 

02. This method was effective in developing spectral indicators(r 
2
=0.76) for PC 

01 soil data. 

The peak height and width information appears not to have captured important 

variation in the shapes of the individual peaks, especially at the shoulders of the 

absorption features. The full spectrum Quant 2 method was able to employ this 

additional information and thus gave better predictions than using the peak 

information alone. The NIRS method of characterizing spectral data was effective 

in interpreting soil condition based on the soil property data. 

5.2 Conclusions 

For purposes of this study, PCA was effective in identifying the principal 

components that contained much of the soil property information required for 

analysis.  
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This study showed that when developing models to predict soil properties from 

infrared spectral data, the full spectrum method as opposed to restricting the 

models to using basic peak height and width information related to the key 

absorption features was more promising in diagnosing soil condition. By relying 

on the inter-correlation among all the soil variables and fitting the soil principal 

components to the full spectra, the study showed that the full spectrum method 

was most robust in developing spectral indicators of soil condition in Kenya based 

on the first principal component of the soil conditions. 

Previous studies show that the soils in Kenya are highly variable in distribution, 

types and condition and soil science is becoming increasingly statistical in nature 

to help deal with this complexity. Near infrared spectroscopy has an important role 

to play in assessment of soil condition by enabling more intensive soil sampling 

schemes by virtue of the simple, rapid and cheap nature of the analytical method.  

It is important in monitoring the soil health and developing different soil 

management interventions. 

This technique reduces the tedious, time consuming and costly process of soil 

analysis, especially for small-scale farmers. Frequent analysis can be carried out to 

determine whether their farming activities are degrading or helping in conserving 

the soil. In addition to the analysis, with further research, NIRS will give 

recommendations on how to improve depleted soils and boost agricultural 

productivity. 

5.3 Recommendations 

With the results from the study, the NIRS technique can be used for large area 

assessment of soil condition based on full spectrum method and the inter-

correlation among all the soil variables. This would provide opportunities for 

development of management approaches in Kenya. It is therefore recommended 

that using Near-infrared spectroscopy, different calibrations are developed for the 

different soil types, properties, areas and studies. 
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On-going research on the use of the technique in Kenya and its applications in 

environmental management should take into consideration the low levels of 

awareness of the technique in the country and facilitate the transfer of this 

knowledge from the laboratory to the landowners, farmers, governments and other 

resource managers. This is for more effective decision making regarding 

monitoring land degradation, improving soil fertility and environmental 

management. 

5.4 Further research areas 

Based on the findings of this study, further research could examine ways of 

classifying spectra into groups and schemes based on whole spectra as an 

alternative pathway for identifying simple soil fertility spectral indicators. This 

would help to capture the complexity in the shapes of the absorption features (the 

mean reflectance, average absorption, width and peak height), while simplifying 

the complexity in the spectra, and provide a simple, first level screening and 

indication of soil fertility.  

Opportunities for further research also exist in comparing the NIRS method with 

the use of other methods including the thermal method of assessing soil condition; 

hence assessing its robustness in diagnosing soil condition.  
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Field Characteristics 

 

Soil properties(units) 

Sample Study Batch LabID Site Plot 

Code 

Depth Clay Ca K Mg P pH Sand C 

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A2: SOIL LOGIN SHEET 

 

Batch    

Batch Title    
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Series    

Sample Type    

Title    

Login Date    

Responsible    

No. of samples    

Scientist    

Location    

Site    

Sample 

Descriptor 

Lab ID Sample ID Sampling Date 

    

    

    

    

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A3: PLS REGRESSION DATASET 

 

 
Principal wave Soil chemical data(units) 
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Regions(Absorbance) 

Sample Wave 

Region 

3 

Wave 

Region 

5 

Wave 

Region 

6 

sqrtClay sqrtExCa lnExK lnExMg lnExP lnpH Sand lnC 

            

            

            

            

            

            

            

            

            

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A4: QUANT 2 CALIBRATION DATASET 

 

Calibration data set 

 

Soil chemical data(units) 
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Sample Spectral 

absorbencies 

sqrtClay sqrtExCa lnExK lnExMg lnExP lnpH Sand lnC 

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

 

 

 


