DECLARATION
I hereby declare that this project proposal is my original work and has not been presented for a Degree in any other University.

Agatha Nabwire Okumu
D53/NKU/PT/21482/10

This research project has been submitted for examination with our approval as University Supervisor:

Mr. Dominic K. Ngaba
Lecturer,
Department of Accounting & Finance

This research project has been submitted to the School of Business with the approval of the Accounting and Finance Department Chairman:

Dr. Fredrick W. Ndeda,
Chairman,
Department of Accounting & Finance
DEDICATION

I dedicate this research to my loving family.
ACKNOWLEDGEMENT
My sincere thanks go to almighty God who makes things possible, He who gave me the ability that I cannot supply to myself. Sincere gratitude to my supervisor Mr. D. K. Ngaba for his timely advises, guidance and encouragement throughout the entire research project. Also, a special gratitude goes to my husband, Samuel and Son Gift, daughters Wendy and Natalie for being there for me even when things seems to be so tough, they endured and encouraged me to soldier on.

My loving husband especially endured the challenges of being left with the kids when I was away most of the time during my busy schedules while pursuing this degree. He also doubled up as my unofficial second supervisor and was instrumental in helping with my understanding of the efficient markets theory and provision of numerous relevant finance articles for review.

A special appreciation also goes to my mum and late dad who believed in me and taught me that education is the best provision in life. Lastly, special thanks also go to the staff of Synergy who supplied the data used for the research, without which this research would not have been successful.
ABSTRACT
Of recent, advances in electronic communications have played an increasing role in changing the microstructure of financial markets. Many stock exchanges across the world are gradually replacing their traditional physically convened markets with electronic markets. For securities markets to contribute to wealth maximization objective of investors and economic growth, they need to be efficient in terms of securities’ price discovery process. The Nairobi Securities Exchange (NSE) has therefore made various changes to its market microstructure, especially the introduction of an automated trading system. The main rationale behind the microstructure changes is to gain market efficiency. Information is however lacking on how such changes have affected the informational efficiency of the Exchange. This study tried to determine whether the introduction of the microstructure changes had improved the informational efficiency of the securities market. Using a data collection sheet, secondary data was obtained from the NSE’s authorized data vendor (Synergy Ltd.) relating to the NSE 20 Share Index for the period spanning 12 years (2000-2012). The data was analysed using non parametric approaches to measure market efficiency before and after market automation. The results indicate that mean market returns in the post automation period were higher and more volatile than those in the pre automation period. This higher market returns can be attributed to improved price discovery process, while the higher volatility may be due to changes in market microstructure through the trading system. The results from normality tests show that market returns are not normally distributed in both the periods. In addition, the runs test results reveals that market returns are more random in the period following automation than the prior period, implying that the market has improved in efficiency. The general conclusion of the study is that introduction of automation in the Kenyan securities market has led to improved market efficiency, providing support for the adaptive market hypothesis. The findings of this study are of importance for policy making, especially interested in improving the efficiency of the Kenyan securities market. The study recommends that the NSE and CMA should consider pursuing full market automation by enabling online and internet securities trading and use of mobile money transfer platforms in paying for stock transactions, in addition to the adoption of a hybrid trading system – both call and continuous trading system – to enhance liquidity and transparency in trading.
TABLE OF CONTENTS

DECLARATION .. ii
DEDICATION... iii
ACKNOWLEDGEMENT ... iv
ABSTRACT .. v
LIST OF ABBREVIATIONS AND ACRONYMS ... x
OPERATIONAL DEFINITION OF TERMS ... xi

CHAPTER ONE: INTRODUCTION ... 1
 1.1 Background of the Study ... 1
 1.2 Statement of the Problem ... 3
 1.3 Objectives of the Study ... 4
 1.4 Hypotheses of the Study ... 4
 1.5 Significance of the Study .. 4
 1.6 Scope and Limitations of the Study .. 5

CHAPTER TWO: LITERATURE REVIEW .. 6
 2.1 Trading System at the Nairobi Securities Exchange ... 6
 2.1.1 Automating the Share Depository, Clearance and Settlement System 8
 2.1.2 Automating the Share Trading System .. 9
 2.1.3 Institution of the Broker Back Office System ... 10
 2.1.4 Installation of the Automated Market Surveillance System 11
 2.2 Theoretical Literature on the Efficiency of Securities Markets 13
 2.3 Adaptive Market Efficiency ... 15
 2.4 Market Microstructure ... 16
 2.4.1 Foundation of Market Microstructure ... 16
 2.4.2 Meaning of Market Microstructure ... 18
 2.5 Empirical Literature on Automation and Efficiency .. 21
 2.6 Studies on the Securities Markets Efficiency in Africa .. 23
 2.6.1 Studies on Securities Market Efficiency in Kenya .. 23
 2.7 Conceptual Framework ... 25
CHAPTER THREE: RESEARCH METHODOLOGY ... 27
 3.1 Research Design .. 27
 3.2 Population and Sampling .. 27
 3.3 Data Collection ... 28
 3.4 Data Analysis .. 28
 3.4.2 Normality Tests for the Distribution in Market Returns ... 29
 3.4.3 Testing the Impact of Automation on Price Discovery Process 30
 3.4.4 Test for Market Efficiency .. 31
 3.5 Data Presentation ... 31
CHAPTER FOUR: RESULTS AND DISCUSSION ... 32
 4.1 Test of Normality Distribution of Market Returns .. 32
 4.2 Impact of Microstructure Changes on Market Efficiency ... 33
 4.2.1 Impact of Market Automation on Price Discovery Process ... 33
 4.2.2 Impact of Market Automation on Market Volatility ... 35
 4.3 Test for Improved Market Efficiency .. 38
 4.3.1 Run Test of Independency in Market Returns ... 38
CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 41
 5.1 Summary of the Findings .. 41
 5.2 Conclusions of the Study .. 42
 5.3 Recommendations for Improving Market Efficiency ... 43
 5.4 Recommendations for Further Research ... 45
REFERENCES ... 47
APPENDICES .. 53
APPENDIX I: .. 53
APPENDIX II: .. 54
LIST OF TABLES

Table 1: Normality Distribution Tests of Market Returns ...32
Table 2: Impact of Market Automation on Market Returns ..34
Table 3: Results of the Impact of Market Automations on Volatility ...36
Table 4: Results of Run Test for the Pre Automation Period ...39
Table 5: Results of Runs Test for the Post Market Automation Period ..39
Table 6: Companies Constituting the NSE-20 Share Index as at 1st October 201253
Table 7: Data Collection Sheet ..54
LIST OF FIGURES

Figure 1: The Conceptual Framework of the Study... 26
LIST OF ABBREVIATIONS AND ACRONYMS

ACRE – Auto Covariance Ratio Estimator
ARMA – Auto Regressive Moving Average
ATS – Automated Trading System
AMH – Adaptive Market Hypothesis
BBO – Broker Back Office
CAPM – Capital Asset Pricing Model
CBK – Central Bank of Kenya
CDS – Central Depository System
CDSC – Central Depository and Settlement Corporation
CMA – Capital Markets Authority
EAC – East African Community
ECN – Electronic Communication Networks
EMH – Efficient Market Hypothesis
EMT – Efficient Markets theory
FISD – Financial Information Services Division
FMH – Fractal Market Hypothesis
IPO – Initial Public Offering
JSE – Johannesburg Stock Exchange
NSE – Nairobi Securities Exchange
REITs – Real Estate Investment Trusts
RRA – Rescaled Range Analysis
SIIA – Software and Information Industry Association
STSA – Symbolic Time Series Analysis
TTE – Time to Equilibrium
OPERATIONAL DEFINITION OF TERMS

Automated Trading System: An electronic trading platform in a securities market where orders are submitted by brokers in an electronic order book either on the exchange floor using a LAN or from their offices using WAN.

Behavioural Finance: Involves the analysis of various psychological traits of individuals and how these traits affect how they act as investors, analysts, and portfolio managers.

Contrarian Strategy: A strategy that involves buying stocks that are trading at a price less than their true worth and with good future prospects, that is, buying stocks with low P/E or low price to book value ratio.

Exchange Demutualisation: The separation of membership, trading rights and management of a securities exchange. It involves the valuation of exchange seats and their conversion into shares, which can then be traded by the brokers to other investors through self-listing of the exchange.

Efficient Market: A market in which security prices rapidly reflect information about securities.

Emerging Markets: A term used to describe the financial markets of developing countries. Definitions vary on which countries are emerging and which are not. However, the emerging market indices compiled by International Financial Corporation and Morgan Stanley are often used as benchmarks.

Environmental Factors: These are factors characterizing market ecology such as the micro structure of the market, number of competitors in the market, the magnitude of profit opportunities available, and the adaptability of the market participants. Environmental factors as used in the study refer to microstructure changes.

Manual Securities Trading: This is where an exchange uses a manual trading platform where brokers have to assemble at the exchange trading floor to trade through open outcry system.
Market Capitalization: This represents the aggregate value of a company or stock. It is obtained by multiplying the number of shares outstanding by their current price per share.

Market Anomalies: Security price relationships that appear to contradict a well-regarded hypothesis; in this case, the efficient market hypothesis.

Market Microstructures: The way a financial market functions under a given set of rules. The study of market microstructure deals with how well or poorly an exchange's rules encourage efficient trading.

Market Returns: The natural log difference of the index at time \(t \) and time \(t-1 \). The index refers to the NSE-20 Share index.

Price Discovery: This is how efficiently new information is incorporated into securities prices. That is, the process of determining the prices of the assets in the marketplace through the interactions of buyers and sellers.

Time to Equilibrium: This is the number of days it takes for a securities exchange to reflect all the information into securities prices.
CHAPTER ONE: INTRODUCTION

1.1 Background of the Study
Securities markets enable firms to easily raise finance, while ensuring efficient capital allocation in an economy. They also contribute to price discovery, provide liquidity, assist in risk transfer, facilitate corporate governance, and a measure of company performance. Financial economists, investment managers, and market regulatory authorities are concerned with the efficiency of securities markets because the ability of these markets to perform their critical functions depends on their level of efficiency.

A securities market is deemed to be informational efficient if security prices, at any time, fully reflect all the available information (Fama, 1970). The more efficient the market, the more random the sequence of price changes generated by such a market. The most efficient market is one in which prices are completely random and unpredictable. Until the 1970s, securities markets were believed to be informational efficient until market anomalies started to be documented. These market anomalies seemed to be at odds with the efficient markets theory (EMT) and led to the emergence of behavioural finance. According to the proponents of behavioural finance, markets are not absolutely efficient as portrayed by the EMT but rather relatively efficient (Chuvakhin, 2000).

Recently, there has been an attempt to reconcile these two opposing schools of thought which has given rise to the Adaptive Markets Efficiency (AME). The AME contends that market efficiency is not an all or none condition but is a characteristic that varies overtime. As such, market efficiency is highly context dependant as influenced by various environmental factors such as regulatory reforms, number of participants, and micro-structural changes (Lo, 2004) undertaken in a market. Whether this new theory will end the debate as to whether securities markets are efficient or not is yet to be established but it gives a better understanding as to why some markets are found to be efficient at some period and inefficient at another period or rather why some markets are more efficient than others.

Studies have been done on securities market efficiency both in Kenya and the world over. However, few studies have examined the impact of market microstructure reforms on market
efficiency, particularly for an emerging market like the NSE. Additionally, studies done on weak form market efficiency have resulted into adopting a fixed approach when testing for efficiency levels, which results into the conclusion that a market is weak form efficient or inefficient. This tends to ignore the environmental factors that may influence market efficiency. According to the AME championed by Lo (2005), market efficiency is highly context dependant as influenced by environment factors such as regulatory changes, microstructure improvement and the number of market participants. As a result, the efficiency of a securities market may change as influenced by these environmental factors. Thus, a more appropriate way to look at market efficiency would be whether the market is becoming more efficient as a result of these factors rather than concluding that a securities market is weak form efficient or inefficient.

Furthermore, one of the main goals of the Kenya’s securities markets regulator and the Exchange itself when carrying out various legal and market infrastructural changes, is to improve market efficiency. The two have been instrumental in implementing infrastructural and institutional changes in the Kenyan securities market. For example, in 2006, Capital Markets Authority (CMA) together with the NSE oversaw the automation of the trading system in order to fully computerize the operations of the securities market. This has significant implication on improving market liquidity, turnover and capitalisation, and operational efficiency of the market. These changes have led to increased participation from local and institutional investors evident in the increasing number of central depository system (CDS) accounts opened due to growing number of listed firms with oversubscription and increased securities investors (CMA, 2013).

It is on the backdrop of these microstructure changes that has seen renewed market activity which led to the NSE-20 Share Index registering an all time high in February 2007 of 6060 points. However, recent political events and the collapse of three brokerage firms have provided lots of challenges to the performance, growth and development of the NSE as many retail investors seem to have shied away from the market. It is such challenges that have called for improvement in the microstructure of the Exchange to achieve more transparency, high trading speed, and increased market surveillance so as to increase its market efficiency.

Automated stock trading is a burgeoning research area for both developed and developing markets enthusiasts. The advent of the Internet has radically transformed the nature of stock trading in most stock exchanges. Traders can now readily purchase and sell stock from a remote site using Internet-based order submission protocols. Additionally, traders can monitor the
contents of buy and sell order books in real-time using a Web-based interface (Hendershott, et al., 2011). The electronic nature of the transactions and the availability of up-to-date order-book data make autonomous stock trading applications a promising alternative to immediate human involvement.

In the past, trading in financial instruments has traditionally required face-face communication at physical locations. However, advances in electronic communications have led to the mushrooming of new trading systems. This development has seen numerous stock exchanges across the world facing off the traditional stock markets and replacing them with electronic markets. The Nairobi Securities Exchange has not been an exception, since on 11th September 2006 the Exchange went into full automation after years of operating as a floor-based oral auction. This event marked a major milestone in the market infrastructure development process of the NSE and was expected to boost market liquidity, increase operational and informational efficiency, reduce settlement risk and elevate the market to international standard.

Notably, a series of microstructure reforms have been undertaken at the NSE through the collaboration between the market regulator, CMA and the Exchange itself. Whether these microstructure changes have improved the efficiency of the market still remained unknown. In addition, whether there had been improved information efficiency as a result of automation of the Kenyan securities market also remained unclear. Therefore, it was important to study whether automation of the NSE had achieved the desired outcomes particularly in terms of improving the information efficiency.

1.2 Statement of the Problem
A number of studies have been done in Kenya assessing whether the NSE is efficient at different forms or not. This tends to ignore the environmental factors that may influence market efficiency. Adaptive market hypothesis contends that market efficiency is highly context dependant as influenced by many environment factors such as microstructure improvement of the trading system, regulatory reforms and the number of market participants. As a result, the efficiency of the market may change as influenced by these factors. A more appropriate approach to look at securities market efficiency is to assess if the market is improving in efficiency due to such changes instead of inferring that the market is efficient at a particular form or not. The NSE has installed an automated trading system aimed at increasing the efficiency of its market. Whether the microstructure changes in the trading system have attained this objective in Kenya
still remains unknown. There is scanty conclusive empirical evidence of the form at which the NSE is efficient, and whether the efficiency of the Kenyan security market has improved following the microstructure changes. In fact, Hendershott and Moulton, (2011) have maintained that the effect of changing automation within a market is an important and understudied area. Therefore, it was important to study whether the automation of securities market had led to improved market efficiency. This study therefore tried to fill this gap.

1.3 Objectives of the Study
The general objective of this study was to evaluate the impact of market microstructure changes undertaken on market efficiency at the Nairobi Securities Exchange. Specifically, the study aimed at achieving the following specific objectives:

1. Compute the market index returns before and after automation of the Exchange
2. Determine the distribution of market returns before and after automation of the Exchange.
3. Assess if the market automation had affected the price discovery process at the Exchange.
4. Determine if automation of the Exchange had reduced the return volatility at the Exchange.
5. Examine whether the efficiency of the market improved following the automation of the Exchange.

1.4 Hypotheses of the Study
The following hypotheses of the study were subsequently tested:

1. Market returns at the NSE were normally distributed both before and after automation of the Exchange.
2. Market returns before and after market automation was not statistically different from each other.
3. Market return volatility before and after market automation were not statistically different from each other.
4. Market returns followed a random walk both before and after market automation.

1.5 Significance of the Study
The efficiency of the securities market has a lot of implications on finance theory and investment strategies and therefore plays an important role to academicians, investors, the securities
exchanges and regulatory authorities. Several models in finance are based on the assumption that stock prices follow a random walk and are normally distributed – the market is efficient. Therefore, the findings of this study was expected to be of interest to scholars as it would add to the stock of knowledge in the pursuit of understanding the efficiency of the securities markets, thus adding to the ever growing literature on market efficiency.

Secondly, financial analysts and investors were also expected to utilize the findings in designing different trading strategies that take into account the existence of random walk or persistence in the short-run and mean reversion in the long-run. The NSE and the CMA, the two who make important policies aimed at the development of the securities market, were also expected to utilize the findings to assess the effect of the microstructure changes being undertaken in the market on the level of market efficiency.

1.6 Scope and Limitations of the Study
This study restricted itself to the automated trading system of the NSE, even though the automation of the exchange began with the installation of the CDS. The first limitation relates to the use of the NSE 20-Share Index as a market benchmark index which may have some limitations since it only captures the 20 highly capitalized and most actively traded companies at the securities market as opposed to all the current 61 listed firms, in addition to its accuracy being questioned (Odera, 2001). However, this did not have a serious draw back as the Index provide a good representation of the market portfolio and data was readily available as opposed to dealing with individual listed companies.

Secondly, the NSE no longer freely provides market data but rather vends its data through its appointed data vendors. This could have implications on the quality of the data used in the study. However, the data obtained from the NSE appointed data vendor was checked for consistency with those contained in the Quarterly Statistical Bulletins of the CMA. The other limitation may arise from the specific statistical tests used in the study. For instance, the use of runs test to investigate the weak form efficiency has recently come under criticism due to its inability to capture non linear relationships in stock returns (Lim and Brooks, 2006). However, this limitation has not invalidated its use in the study as run test has been extensively used by other researchers such as Simon and Laryea (2004), Mlambo and Biekpe (2005), Okpara (2010), Kariuki (2011), Kariuki and Onyuma (2012), and Owido (2013).
CHAPTER TWO: LITERATURE REVIEW

This chapter reviews the pertinent literature on market microstructure and efficiency relevant for this study. It begins by detailing microstructure changes which have taken place at the NSE’s trading systems and examines the empirical literature on market automation and efficiency in order to develop a conceptual framework for the study.

2.1 Trading System at the Nairobi Securities Exchange

The Nairobi Securities Exchange was established in 1954 as a voluntary association of stockbrokers and was registered under the Societies Act (Mbaru, 2008). The Exchange is the largest in East African Community (EAC) and currently ranked second in Africa, after the Egyptian Exchange. On 12th February 2007, the NSE 20-Share Index recorded an all-time high of 6060.46 points (NSE, 2012a). In July 2011, the Nairobi Stock Exchange changed its name to the Nairobi Securities Exchange Limited, through a demutualization process, to reflect the strategic plan of the Exchange of evolving into a full service securities exchange which supports trading, clearing and settlement of equities, debt, derivatives and other associated instruments. In September 2011 the NSE converted from a company limited by guarantee to a company limited by shares and adopted a new Memorandum and Articles of Association reflecting the change, under the ongoing demutualization process. Finally, in March 2012, the NSE became a member of the Financial Information Services Division (FISD) of the Software and Information Industry Association (SIIA).

Following its inception, the Exchange adopted a trading system which was manual in nature, first a call over system, and then the open out cry trading system. Over the years, the NSE has grown in several aspects although it has remained as an order-driven market. Order-driven markets may take the form of oral auctions, single price auctions, continuous electronic auctions and crossing networks (Francioni et al, 2008). At the time of its establishment, the NSE operated a periodic call auction as there were few listed securities and trading activity was minimal. There was also no physical trading floor as transactions were carried out in a coffee-house forum over the telephone and prices were determined through negotiation. Under the periodic call market, all traders traded at the same time when the market was called and transactions were settled at a single clearing price. The single clearing price was the price at which most bids and offers would
be executed. The market would call all securities simultaneously or it may call securities one at a time, in a rotation.

In 1991, trading was moved from the coffee-house to a floor based open outcry system. The structure changed from a call market to a continuous auction. With the open outcry system, traders arranged their trades face-face on the exchange trading floor, which was guided by the market trading rules. Some traders shouted out their bids and offers to attract other traders while others listened to the bids and offers they were willing to accept. Trades occurred when a buyer accepted a sellers offer or a seller accepted a buyers bid. In the case of the buyer, the buyer would call out take it to accept the offer while in the case of the seller, the seller would call out sold out to accept the bid. Usually, buyers and sellers would take turns bidding and offering until they agree on the price and quantity to trade (Kariithi, 2001).

With the floor based open outcry system, trading was conducted from 10 am to 12 pm. Potential buyers and sellers would place their buy or sell orders through stockbrokers, who in turn, would place their orders through their representatives at the trading floor. Daily limits on price movements were also set at 15 percent of the opening bid or offer prices. This system was adopted as it enhanced transparency by allowing brokers an equal opportunity to bid for securities and its ability to handle increased trading activity. Further, it was felt that trading in the coffee-house environment did not generate enough public awareness and the prices obtained by buyers and sellers were not the best (Ngugi, 2000). The NSE later moved to more spacious premises at the Nation Centre in July 1994, setting up a computerized delivery and settlement system (DASS).

Despite these developments, the NSE still operated a manual clearing and settlement system which had a serious impact on the liquidity and operational efficiency of the market. For example it would take about two weeks between the actual security sale and confirmation. Some notable problems with manual trading are that transparency for floor trading, pre-trade transparency in particular, was low at the former Nairobi Stock Exchange. Stock quotes were not distributed publicly as they were available on the floor only. Market manipulation and other abuses of power and position were believed to be rife on the NSE floor. Investors also waited for long as transactions were settled after many days. Given the appreciable market fragmentation, poor transparency, imperfect inter-market linkages with other EAC exchanges, and dubious trading floor behaviour, transaction costs were high (Onyuma, 2012). Changes, both structural
and regulatory, were therefore called for. This led to the need to institute a better trading system and a proposal was floated in 1995 to adopt a Central Depository System (CDS).

On 1st August 2000, a delivery versus payment system (DvP) was introduced as the initial step towards moving to the electronic system of settlement. The aim of setting up the DvP was to move the market from T+7 closer to the T+5 days environment, enhance investor confidence and liquidity by making the settlement period shorter and safer and enable brokers to concentrate on their core business. However, the DvP faced the main challenge of settling transactions within 5 days of trading (T+5) and providing shareholders with their shares within seven days after trading. There were still delays in settling trades and this made some investors to lose dividends as certificates were being prepared. This had the potential of significantly affecting the market liquidity and efficiency negatively (Jallow, 2009).

The Capital Markets Authority, having approved the revision of the NSE Trading Rules and the Central Depository and Settlement Corporation (CDSC) Operational Rules for the purposes of reducing the equities settlement cycle, the NSE on July 4th 2011, reduced the securities settlement cycle from the T+4 to the T+3 (NSE, 2011a). The move to the T+3 Settlement Cycle was in line with international best practice as recommended by the International Organization of Securities Commission (IOSCO) in the Objectives and Principles of securities regulations. Therefore, on the sale side, investors are able to get their money, three days from the sale of their shares, whereas, on the buy side, investors are able to get their shares, three days from their purchase. The efficiency and reduction of risk that comes with an electronic trading and a shorter settlement cycle, could improve liquidity in the market for listed equity securities, making the market more attractive to domestic and foreign investors. The result of all these efforts was the development of the central depository system and an automated trading system – an electronic order-driven trading system that comprises two principal modalities – a continuous order book platform and periodic single-price call auctions.

2.1.1 Automating the Share Depository, Clearance and Settlement System
The trading system employed by the NSE for over five decades was manual – first, a call over system and then the open out-cry system. The call over and open out-cry systems of trading have great limitations in terms of the traded volumes they can handle and the speed at which trade can be executed (Mbogua, 2007) and hence the need for market automation. After various complications, the NSE launched a central depository system (CDS), on 24th November 2004,
having been procured from Millennium Information Technologies (MIT) of Colombo, Sri Lanka at a cost of Ksh.100 million.

The many functions of the CDS include: to facilitate the faster change of ownership of securities electronically between parties, without the need for the movement of physical documents. Share transfer can also be electronically done in an efficient, safe, transparent and cost effective manner. It is meant to minimize the delivery and settlement risks, speeds up securities distribution, attract more firms to list and facilitate the process of securities markets integration (Onyuma et al. 2011). The launch of CDS has, however led to some fraudulent activities by broker some of whom dealt on their clients’ shares without their authority, leading to collapse of four brokerage firms, and calling for more automation and legal reforms.

2.1.2 Automating the Share Trading System
An automated securities trading system is one in which trading is conducted by a network of computers connected to a trading engine, and where brokers simply enter, using a computer, the volume they want to trade and their preferred price (Jallow, 2009). The computer then processes the various offers and bid prices and determines the best price at which the trade should be executed. The computer then matches the orders and allocates them in order of programmed priorities for trade execution. Some markets are partially automated in the sense that they allow transactions to be executed manually on the exchange floor, while orders are however entered on the electronic screens.

On 11th September 2006, the automated trading system (ATS) was launched by the Exchange, in which the human interface was eliminated and replaced with computers and computer networks (Onyuma, et al. 2011). The ATS was also procured from MIT of Colombo, the same vendor who supplied the CDS, at cost of Ksh.100 million. The structure of the market changed from the floor based oral auction system to an electronic auction. All bids and sell offers are submitted to the specific brokers who in turn submit through an electronic network and are displayed in a central limit order book accessible to all traders. The central limit order book displays all the bids in a descending order and all the offers in an ascending order. All orders are electronically matched and executed using a set of computer algorithms that consider price and time priority. The trading of securities including the orders is displayed real-time, with the aim of increasing the trading speed and market efficiency. With the ATS, trading hours has increased from 9.00 am to 3 pm and settlement period reduced from T+7 to T+3 days (NSE, 2012a).
In February 2007 NSE upgraded its website to enhance easy and faster access of accurate, factual and timely trading information. The upgraded website has boosted the data vending business of the Exchange. A Wide Area Network (WAN) platform was implemented in 2007 and this eradicated the need for brokers to send their traders to the trading floor to conduct business. Although trading is currently mainly conducted from the brokers’ offices through the WAN, however, brokers under certain circumstances can still conduct trading from the trading booths at the floor of the Exchange. The NSE marked the first day of automated trading in government bonds through the ATS in November 2009. The automated trading in government bonds marked a significant step in the efforts by the NSE and CBK towards creating depth in the capital markets by providing the necessary liquidity.

Recently, the NSE introduced a live trading board that enables the public to view the order book in order to encourage transparency and efficiency. Also, some brokerage firms provide their clients with access to the order book as well as allowing them to submit orders remotely, through an online trading system (Kariuki and Onyuma, 2012).

2.1.3 Institution of the Broker Back Office System
In October 2011, through a stakeholder driven process, the Exchange implemented a Broker Back Office system (BBO) which is tightly coupled and interfaced with the ATS and CDS (NSE, 2011b). This system automates order collection, contracting, settlement and accounting. It has an audit trail functionality that tracks all changes made to trade data, and keeps a record of who changed it and when. Such changes are made available in a form that is easy to understand. The administrator can place restrictions on the value of financial entries that individual users can book into the system. All entry or modification of sensitive data can be configured to require an additional level of authorization through a maker checker policy.

According to NSE (2012b), the maker-checker authorization covers all sensitive activities in the system, including all aspects of user management, payment authorization, creation or editing of sensitive client data, changes to brokerage or agent commissions, creation of new accounts and for authorizing voucher entries. To prevent fraudulent activities on dormant client accounts, the system automatically classifies accounts as dormant depending on the level of activity and requires additional authorization for all transactions made on such accounts. The system enforces a strict password policy, uses encrypted transmission over the wire, automatically times out inactive sessions and restricts concurrent logins into the system. The software can also highlight
which users have access to sensitive activities. The BBO system recognizes the importance of providing visibility to the top management on the nature of complaints received from clients.

The system therefore provides insightful reports on the frequency and nature of complaints, their financial impact and the time taken to resolve them. The system therefore automates the back office of brokers, reducing human intervention and empowering senior management of brokerage firms to monitor and audit activities through suitable alerts and exception reports (NSE, 2012b). Overall, the system bolsters existing security measures and reduces the risk of trading in securities listed on the NSE. It should in future enable further innovation through Internet access to the ATS, helping trading participants expand their services across all 47 counties; facilitate IPO, portfolio management and complaints processing; and enable mobile phone trading.

2.1.4 Installation of the Automated Market Surveillance System
Prior to 2012, the CMA previously conducted surveillance through a market control system that was provided by the trading platform vendors. This system was however found to be inadequate due to market sophistication and innovation in Kenya. The surveillance function of the Authority plays a key role in ensuring that trading of securities at the NSE is carried out in a manner consistent with the laws, regulations and guidelines governing securities and that market players act in compliance with the Capital Markets Act and other Regulations. In order for the CMA to keep abreast with the changing market environment, it is essential that its functions are continuously strengthened calling for the need for a new robust surveillance system. As part of its mandate to maintain an orderly, fair and efficient market and thus protect investor interests, the CMA on 27th June 2012 implemented an advanced and robust market surveillance system, called Capizar Market Surveillance (CMS) procured at Ksh.48 million from Infotech Middle East FZ-LLC (CMA, 2012). The decision to set up an advanced and enhanced market surveillance system was informed by evolving sophistication in the securities market and to enhance the Authority’s investor protection initiatives through its ability to identify and prevent market malpractice.

The Authority has stepped up its oversight role to ensure real time surveillance and any irregularities in trading are identified and curbed early enough through this enhanced surveillance system. The system has enhanced monitoring of trading activities to identify unusual trading patterns and market conditions that indicate violations of the Capital Markets
Act (Cap 485A) and other Regulations. It has also enabled CMA to monitor trading activities in the market on real time basis by providing early warning signs through the use of alerts having undertaken multiple analysis and rapidly identifying abnormal trading behaviour, which are saved to assist in investigations and to gather further evidence for prosecution in cases of breach of market Regulations (CMA, 2012).

The system has pre-configured rules to determine common trading patterns that constitute market abuse, including front-running and insider-trading. This is because the market surveillance system is capable of detecting fraud and abnormal trading in real time thereby enhancing protection for investors. This means that cases where staffs of brokerage firm fraudulently engaging in unauthorized dealing on client’s securities as witnessed between 2007 and 2009 at the NSE (Mbuva, 2011) are preventable. The system also reports post-order and pre-order analysis of transactions thus increasing CMA surveillance capability. Although the NSE and the CMA have been conducting real time market surveillance prior to the installation of the new system, the new technology sets an interface in which the NSE, CMA and Central Depository and Settlement Corporation (CDSC) all simultaneously monitor transactions online.

This system gives alerts of any irregular trading patterns and market replay which from an investor point of view is to assure investors that the integrity of this market is at par with others globally. Therefore, should there be any irregular trading or fraud detected the system should issue an alert to CMA. By analysing transactions and saving market reports, the system should enable easy investigations in cases of breach of market rules by saving evidence. This means that with CMS system, insider trading, which has been prevalent in Kenyan securities market (Maobe, 2012) can be potentially eliminated. The implementation of the robust market surveillance system was also expected to increase the depth and numbers of investors while attracting new issuers to the market due to improved market integrity, investor confidence and market efficiency.

The automation of depository and settlement operations in 2004, the implementation of the Automated Trading System in 2006 and Wide Area Network in 2007, installation of a Broker Back office in 2011 and the launch of automated market surveillance system (Capizar) in 2012 all have widely transformed the Kenyan securities market to globally accepted financial market standards and competitively positioned it as a safe and preferred investment destination. Operationalising an electronic trading platform has allowed the CMA, NSE and securities
investors to reap the full benefits of technology. Such developments in the securities markets through undertaking changes in market microstructure are likely to make them deeper and more efficient. This in turn has been found to help them reduce the cost of capital, spur investments and promote savings-investment balancing (Kalra, 2010).

2.2 Theoretical Literature on the Efficiency of Securities Markets

The efficient market hypothesis (EMH) championed by Fama (1965) forms the cornerstone of modern finance. When the market is efficient, all available information is fully and instantaneously reflected in price, and no investor or trader is capable of making abnormal profit. When the information set is limited to past price and return, the market is said to be weak-form efficient and the asset return is purely unpredictable from the past information.

According to the EMH, a market is said to be informational efficient if security prices at any time fully reflect all the available information (Fama, 1970). Information refers to anything that may affect stock prices and is unknowable in the present and thus appears randomly in the future. It follows that if new information is unpredictable then security prices should move randomly and unpredictably and the best predictor of tomorrow’s price would be today’s price. In its weakest form, the EMH states that past prices cannot be used to predict future prices. Therefore, the use of technical and fundamental analysis is of no real value in securities market analysis.

For a long time, the random walk model has been used to examine the weak form efficiency of stock markets. However, a major limitation with the random walk model is that it requires a prior assumption of normal distribution. Indeed studies have shown that returns are not normally distributed but rather they exhibit certain stylized facts such as heavy tails and volatility clustering. This is not surprising given the changes in market microstructure and irrational behaviour exhibited by investors such as overconfidence (Barber and Odean, 2001), overreaction and under-reaction (Debondt and Thaler, 1985), and loss aversion (Kahneman and Tversky, 1979).

Lo (2004) has reported that there is no consensus among finance academics and practitioners as to whether securities markets are efficient. While most of finance professors believe the market is weak-form efficient (Doran, et al. 2009), there are critiques from the behavioural finance who document irrational, but highly predictable, investor behaviours such as
overreaction and overconfidence (Barber and Ordean, 2001). Grossman and Stiglitz (1980) have even argued that a perfectly efficient market is impossible to exist.

In response to these critics, Campbell et al. (1997) propose the concept of relative efficiency, which departs from all-or-nothing view. With relative market efficiency, it is useful to measure the degree of efficiency or return predictability. Currently, it is widely believed that the degree of market efficiency changes over time. For example, Yen and Lee (2008) report empirical findings in support of market efficiency in the 1960s; mixed outcomes in the 1970s to 1980s; and challenging outcomes in the 1990s. Park and Irwin (2007) provide a similar survey, where early studies (1960-1987) find no evidence of profitability of technical trading rules while most modern studies (1988-2004) report otherwise. Hence, the findings of these studies point to the claim that the stock market in general becomes less efficient over time.

Empirical results are even mixed for developed securities markets such as those in the USA. Gu and Finnerty (2002) report that the market has shown improved efficiency since the late 1970s, while Lo (2004) report that the degree of efficiency varies in a cyclical fashion and that the market has been more efficient in the 1950s than in the 1990s. Ito and Sugiyama (2009) reported that the market was efficient in the 1960s and 1970s, highly inefficient in the 1980s, and then became efficient again around 2000. Additionally, Grossman and Stiglitz (1980) showed that it is impossible for markets to be perfectly efficient. If markets are perfectly efficient there would be no reason to trade and eventually markets would collapse. Inefficiencies motivate investors to trade as long as they can compensate for the cost of trading and information gathering. Black (1986) showed that the sources of inefficiencies are noise traders, that is, individuals who trade on what they consider information but is merely noise.

The non normal behaviour of returns questions one of the core theories in finance, the Capital Market Theory. It is no wonder that alternative models have developed to better describe the non normal and non linear behaviour of returns such as the Fractal Market Hypothesis (FMH) (Peters, 1994). Under the FMH, markets are assumed to follow a stable paretian distribution as opposed to a normal distribution. Securities markets are also depicted as complex evolving systems which cannot be modelled by linear methods of efficient market theories. The complexity of the markets stems from heterogeneous expectations by investors who are not fully rational, that is, they apply available information differently, invest at different investment
horizons and react gradually to the information (Peters, 1994). Eventually, markets follow a biased random walk as opposed to a pure random process.

Besides the limitations of the random walk theory, studies have also shown that measuring the absolute efficiency of the market may lead to the wrong conclusions. According to Campbell et al (1997), absolute efficiency is unrealizable in the real world and thus relative efficiency may be a better way of looking at market efficiency – that is, comparing the efficiency of markets with respect to each other – for instance, futures versus spot markets, or auction versus dealer markets.

This view is also shared by Lo (2007) who stated that perfect efficiency is an idealisation and sets forth the necessary framework for measuring relative efficiency. For instance, Lo (2007) compared market efficiency to a piston engine and stated that a piston engine can be said to be 60 percent efficient, that is, 60 percent of energy contained in the fuel is used to turn the crankshaft, while the remaining 40 percent is lost in heat, light or noise. Few engineers will be interested in testing whether an engine is perfectly efficient since such an engine will only exist in an ideal world. If the market is to be viewed as a machine whose role is to set prices properly, the inefficiency of this machine can be substantial.

2.3 Adaptive Market Efficiency
The evolving nature of return predictability can be rationalized in the framework of Lo’s (2004) adaptive markets hypothesis (AMH). With investor rationality at the heart of the controversy between advocates of the efficient market hypothesis and its behavioural critics, Lo (2004) provides reconciliation through the AMH in which market efficiency is explained from an evolutionary perspective. It is an application of the evolutionary principle to financial markets, which argues that constantly changing market conditions govern key market features such as return predictability. Therefore, the market efficiency cannot be evaluated in a vacuum, but is highly context dependent and dynamic environment (Lo, 2007). Among others, the AMH implies that return predictability and investment profitability do arise from time to time due to changes in the demographics of investors, financial institutions and market conditions.

Empirically, there is an expanding literature that reports evidence of time-varying stock return predictability, which is consistent with the prediction of AMH (Lim and Brooks, 2011). However, none of those previous studies explore whether the return predictability is driven by changing market conditions. Since 1997, the Kenyan securities market has experienced a number
of exceptional market infrastructural developments such as installation of CDS and ATS; political, economic, and ethical crises; and market bubble in 2007. These events may have strong implications to the behaviour and psychology of market participants, which in turn may affect the pattern of price changes (Kim and Shamsuddin, 2008; Lim et al., 2008). In view of Lo (2007), AMH is highly likely that the degree of return distribution and independency are driven by such dynamic market conditions.

The CMA and NSE have been instrumental in implementing policy and institutional changes in the Kenyan securities market. For example, in 2006, CMA together with the NSE oversaw the automation of the trading system in order to fully computerize the operations of the securities market. This has significant implication on improved market liquidity and operational efficiency of the market. The various market institutional and infrastructure reforms have led to increased participation from local and institutional investors evident in the increasing number of CDS accounts opened due to growing number of listed firms with heavy oversubscription and securities investors (CMA, 2012).

2.4 Market Microstructure

2.4.1 Foundation of Market Microstructure
During the last few decades, the organization of securities markets have been profoundly transformed: from national exchanges organized under various mutual forms, the industry switched almost entirely to transnational exchanges organized as corporations owned by their clients or other investors; futures and option markets became more independent and important; physical floors almost disappeared and continuous electronic trading became the norm (Onyuma, 2006a). These changes, which were quite radical comparing to the industry's standards, were part of a wave of deregulation and privatization of economic infrastructures which started in the UK and US around 1980. But, beyond the affirmed virtuous of competition among securities exchanges, the very reasons for their general diffusion and their speed have not been provided yet (Hautcoeur and Riva, 2011).

At the same time, in academia, a new literature developed studying financial markets’ microstructures in theoretical, empirical and experimental perspectives. This growing body of research is a signal of the strong interest that – during such a period of intense financial innovation – securities markets’ scholars, regulators and practitioners had for the actual functioning of financial markets, well beyond the neoclassical assumptions of perfect markets.
with complete information and without frictions. Actually, the large investments in trading process and technologies by securities exchanges, as well as the absolute amount of transaction costs in a world of huge daily financial transactions would be enough to justify the interests of the finance scholars for market microstructure. Nevertheless, if that literature emerged recently as a new field in finance, it was only apparently new.

The expression market microstructure comes from the title of Mark Garman’s article published in the Journal of Financial Economics in 1976, but one of the first theoretical works on this topic was the *Elements d’économie politique pure* by Léon Walras, published exactly a century before in 1876. In this book, Walras drafted its theory based on the modeling of the working of the Paris Bourse and supplied the foundation of the modern market microstructure theory while discussing in detail the actual functioning of the market (Walras, 1880). It is probably only because of a long period of negligence due to the marginal role that securities markets played in financial systems from 1914 to the late 1970s, that the study of microstructure so lately renewed the interest that late 19th – early 20th century scholars had shown in financial market’s organization.

Since then, a robust theoretical and empirical literature on market microstructure has demonstrated on rigorous microeconomic basis the impact of the organizational setting on markets’ performances (Majois, 2008). Within the standard framework, trades have both a permanent and a short term impact on the prices of securities. While the permanent impact on prices reflects the pure informational content of trades, the short term impact reflects the transactions costs and market frictions that traders face. These elements divert prices from the fundamental value of the securities and can add volatility while reducing liquidity and increase counterparty risk. Consequently, they represent frictions for capital allocation, additional cost of capital for corporations and barrier to efficient portfolio allocations for investors with clear impact on efficiency of an economy (Biais, et al., 2005).

In spite of taking into account frictions and costs in securities exchanges, that literature is based on the market efficiency hypothesis and tries to explain within that framework the gaps between the actual and the theoretical functioning of the markets. As a consequence, its goal in normative terms is to find the conditions which would help facilitating and accelerating the convergence of short term prices towards long term ones, the later being supposed to reflect the fundamental values of the traded securities, even if fully efficient allocations are in general not
achieved (Biais, et al., 2005). It is clear that market microstructure theory in its standard development does not cope with theories questioning the very existence of a fundamental value or arguing that prices can fluctuate durably far from this value (Bourghelle et al. 2005).

Nevertheless, recent developments of market microstructure deal with behavioural finance and try to integrate traders’ psychology in the models in order to explain overconfidence of informed traders and hoarding behaviour of both informed and liquidity traders, phenomena which lead to volatility excess and bubbles (Madhavan, 2000). On the other hand, the distinction between short and long term impact of trades leads to question on how short is the short term and how long the long term is. Very recent high frequency trading techniques in developed financial markets seem to suggest that the short term horizon of prices might be measured in nanoseconds. At the opposite end, if the long term convergence were to slow, one should wonder about the exogeneity of information and “fundamentals” to price formation.

2.4.2 Meaning of Market Microstructure
Microstructure analysis is inherently involved with analyzing the detailed functioning of a marketplace. The literature has a strong theoretical component and, to a large extent, is structured to yield insights into the effect of market design on market performance (Francioni, et al, 2010). Market microstructure deals with the financial intermediation in the process of trading financial securities. In a trading market, assets are not transformed – as they are, for example, by banks that transform deposits into loans – but are simply transferred from one investor to another. The financial intermediation service provided by a market is immediacy (Sinnakkannu, 2006). An investor who wishes to trade immediately is a demander of immediacy and one does it by placing a market order to trade at the best available price – the bid price if selling or the ask price if buying. Suppliers of immediacy establish the bid and ask prices. Depending on the market design, suppliers of immediacy may be professional dealers that quote bid and ask prices or investors that place limit orders, or some combination.

Where the participants in the securities market behave rationally and have the same information, share prices will at all times reflect all available information about firms’ fundamental value. Since it was first advanced in the 1960s, this has been one of the most important hypotheses in financial economics. However, over the years, both the theoretical foundation for this hypothesis and the previously strong empirical support for it have been challenged. The microstructure literature challenges the hypothesis of efficient markets by
studying how prices can deviate from or converge towards informationally efficient equilibrium prices as a result of rational participants behaving strategically (Biais et al., 2004). Strategic behaviour can be put down to unequal access to information or to limited liquidity in the secondary market. While the EMH abstracts from the actual process which leads to buyers and sellers finding one another and agreeing on a price, the microstructure literature focuses on the functions performed by the marketplace.

Themes in the microstructure literature are divided into three (Naes and Skjeltorp, 2006): the actual transaction process, the effects of market structure and trading rules on the transaction process, and the transaction process’s implications for fundamental economic decisions. This subdivision also largely reflects the chronological development of this research field. There are two main groups of models of transaction process. The first (inventory models) studies how an intermediary (like dealers) can solve the problem of buyers and sellers not being present in the market simultaneously. The second (information models) analyses how information which is asymmetrically distributed between participants in the market is reflected in the prices of securities. Research into the significance of market structure and trading rules is the subject of this study. The importance of the organization and design of the securities market came to the fore in the wake of the crash of 1987 and the revelation of collusion among the dealers on NASDAQ in 1994. There has since also emerged a considerable body of literature on the effects of market fragmentation and competition from new electronic trading systems.

Microstructure research rejects the hypothesis that the transaction process and the organization of markets have no effect on the prices of securities. Some studies elsewhere have looked at whether the stock market’s microstructure can also have long-term effects on prices and returns. The development of market microstructure as a subject has coincided with a period of establishment of new stock markets and revitalization of existing markets in many developing and transitional economies (Jallow, 2009). The revitalization of these emerging stock markets is typically characterized by institutional reforms, including modernization of the trading and information systems, expanding stock market membership, revamping the regulatory framework, and opening access to foreign capital. The developments are aimed at improving stock market performance by increasing liquidity and transparency, enhancing efficiency, and reducing volatility and trading costs (Kariuki and Onyuma, 2012). The wider goal is to promote the development of local capital markets and facilitate access to long-term capital.
The main issue in stock markets is whether and how market microstructure changes can create a positive value in terms of liquidity, efficiency, price discovery, and volatility. Previous studies on more established markets, which have implemented changes in trading systems, have reported a positive impact, creating gains in market efficiency, increased liquidity and lower volatility. These include studies in Milan (Amihud, et al., 1990), Tokyo (Amihud and Mendelson, 1991) and Tel Aviv (Amihud, et al., 1997). Blennerhassett and Bowman (1998) reported a fall in transactions costs on the New Zealand stock exchange following the move from open outcry to screen trading, and Majnoni and Massa (2001) report broadly positive results after implementing market microstructure changes in terms of trading regulations and transaction cost introduced by the Italian Stock Exchange. There are fewer such studies in emerging markets, and their results are more mixed.

Masulis and Shivakumar (2001) studied how different stock markets with different market microstructure affect the speed with which new information is incorporated into prices in the US and reported finding suggesting that differences in market microstructure can significantly accelerate or retard the incorporation of news into market prices. Some findings suggest that the entry of foreign investors is an important factor than internal market reform (although the former may be predicated on the latter), and that this is followed by increased liquidity and enhanced market efficiency, with market volatility either remaining unchanged or declining (Ngugi, et al., 2002). Sunday (2011) has found increased market turnover and liquidity in Nigerian market following installation of an ATS. However, Chang, et al. (1999) found no change in liquidity or in the efficiency of the price discovery process, while volatility increased, following the introduction of a continuous auction system in Taipei Stock Exchange.

However, the central idea of market microstructure change is to gain market efficiency. Stock markets are constantly thriving to implement changes in market microstructure, which is most obviously driven by the rapid structural, technological, and regulatory changes affecting the securities industry worldwide. The causes of these structural shifts are complex. They include the substantial increase in trading volume, competition between exchanges within the same country and regions, the introduction of Electronic Communications Networks (ECNs), changes in the regulatory environment, technological innovations, the growth of the Internet usage, and the proliferation of new financial instruments. When the relevant market microstructures are changed in tandem with the said changes the market is expected to gain efficiency.
2.5 Empirical Literature on Automation and Efficiency

Technological change has revolutionized the way financial securities are traded nowadays. Every step of the trading process, from order entry to trading venue to back office, is now highly automated, dramatically reducing the costs incurred by intermediaries. By reducing the frictions and costs of trading, technology has the potential to enable more efficient risk sharing, facilitate hedging, improve liquidity, and make prices more efficient. This could ultimately reduce firms’ cost of capital.

Recently, many securities exchanges across the world are moving from physical trading platforms to computer based system – automated trading. Although numerous studies have been conducted on the effects of automation, most of the studies examine the effect of automation on market characteristics such as volume, liquidity and volatility. Few studies have formally examined the effect of automation on information efficiency. For instance, Amihud et al. (1997) using an event study method observed that the Tel Aviv Stock Exchange greatly benefited from the change in trading system. Stocks that were selected for transfer from the call auction system to the continuous trading system posted positive gains due to liquidity improvements. Olujide (2000) found evidence that the automation of the Nigeria Stock Exchange in 1997 through the introduction of CDS and the ATS had a positive impact on the liquidity of the market, transparency, investor confidence and foreign investment.

Other studies for instance, Majnoni and Massa (2001) found evidence of increased efficiency at the Italian Stock Exchange after microstructure reforms (creation of specialised intermediaries, obligation to trade on the official markets, screen-based trading and cash settlement). Alam et al. (2011) found that despite the numerous policy reforms undertaken at the Dhaka Stock Exchange the market was still inefficient at the weak form. The few studies that have formally examined the effect of automation on efficiency have reported mixed outcomes. For example, Sinnakkannu and Nassir (2006) found that micro-structural changes (introduction of computerized trading, central depository system and clearing and settlement) implemented by Bursa Malaysia reduced the time to equilibrium, that is, speed for information adjustment from 14 days to 9 days in 2001. Freund and Pagano (2000) found that the level of informational efficiency remains unchanged during the automation period although the Toronto Stock Exchange showed improvement in efficiency when compared to the New York Stock Exchange.
On the contrary, Maghyereh (2005) found no evidence of improved efficiency following the automation of the Amman Stock Exchange. Similarly, Debysingh and Watson (2007) found that the Jamaican Stock Exchange, and the Trinidad & Tobago Stock Exchanges were informational inefficient both before and after automation. Although the authors caution that these results should be interpreted with caution due to data limitations encountered.

The above review focused on the effects of automation mostly from developed countries. However, given the developments that have taken place in the NSE and the lack of evidence on the effects of automation particularly from an emerging market perspective, this study undertakes to close this gap. Sioud and Hmaied (2003) study of the automation of the Tunis Stock Exchange found higher trading volume with no reduction in volatility or price error, thus no improvement in market efficiency. Majnoni and Massa (2001) found evidence of increased efficiency at the Italian Stock Exchange after micro-structure reforms. Amihud et al., (1997) using an event study method observed that the Tel Aviv Stock Exchange greatly benefited from the change in trading system. Stocks that were selected for transfer from the call auction system to the continuous trading system posted positive gains due to liquidity improvements. Furthermore, Olujide (2000) found evidence that the automation of the Nigeria Stock Exchange in 1997 through the introduction of Central Securities Clearing System and the ATS had a positive impact on the liquidity of the market, transparency, investor confidence and foreign investment.

Empirical evidence further shows that even an increase in trading hours can lead to improved efficiency. For instance, Chauhan and Argawal (2010) found that increased trading hours in the Indian Stock Market had the following ramifications; it reduced the influence of the SGX Nifty Futures on the S&P CNX Nifty, reduced the volatility of returns in the S&P CNX Nifty, increased trading volume and liquidity and increased foreign institutional investor participation.

Many market participants now employ algorithmic trading, commonly defined as the use of computer algorithms to automatically make certain trading decisions, submit orders, and manage those orders after submission, as opposed to using a broker. From a starting point near zero in the mid-1990s, algorithmic trading is thought to be responsible for as much as 73 percent of trading volume in the United States in 2009 (Hendershott et al., 2011). Automated trading through algorithmic trading has been found to narrow the stock quote spreads, reduces adverse selection
and trade–related price discovery, thereby improving stock and overall market liquidity and enhance the informativeness of the stock quotes (Hendershott et al., 2011).

2.6 Studies on the Securities Markets Efficiency in Africa

Studies on weak form efficiency have been conducted on various securities markets in Africa. In general, there are wide disagreements on whether these markets are weak form efficient or not. To begin with, Using parametric test (auto-correlation and variance ratio test) and non-parametric tests including runs test, Simon and Laryea (2004) examined the weak form of efficiency in stock markets of South Africa, Ghana, Mauritius, and Egypt and found only South Africa to be weak form efficient. On the contrary, Mlambo and Biekpe (2005) studied 10 other stock markets in Africa individual stocks returns adjusted for thin trading, and found Kenya, Zimbabwe and Namibia – due to its dual listings with JSE – to be weak form efficient, with inefficiency reported in Ghana, Mauritius, Egypt, Botswana, and BVRM exchanges.

Ntim et al. (2007) also examined the weak form efficiency in the Ghana Stock Exchange (GSE) using robust test – the variance ratio test developed by Lo and Mackinlay (1988) and found weak form inefficiency. This is in line with the findings reported by Mlambo and Biekpe (2005) but contrary to the findings of Simon and Laryea (2004). Additionally, Kalu (2008) found that the returns in the Nigeria Stock Exchange are not normally distributed and do not follow a random walk. In contrast, Okpara (2010) concluded that the Nigerian Stock Exchange was weak form efficient using all share index data, and a series of runs test and autocorrelation test. In addition, a review of security markets in Africa by Jefferis and Smith (2005) concluded that the NSE is not weak form efficient and shows no tendency towards efficiency.

2.6.1 Studies on Securities Market Efficiency in Kenya

A number of efficiency studies have been conducted at the Kenya securities market. However, these studies provide mixed evidence on the efficiency of the NSE. Using runs tests and autocorrelation analysis, Dickinson and Muragu (1994) examined the weak form efficiency of the NSE from 1979-1989 using 30 stocks at the NSE and found the market to be weak form efficient. Mlambo and Biekpe (2005) and Magnusson and Wydick (2002) found the NSE to be weak form efficient. In addition, Rioba (2003) examined the predictability of stock returns in the NSE and found weak evidence of predictability which implies that the market is weak form efficient.
Parkinson (1987) on the other hand found the NSE to be weak form inefficient using data from 50 listed companies and a series of runs test. In addition, Jefferis and Smith (2005) found the NSE to be weak form inefficient. On the other hand, Onyuma (2009) found presence of the day of the week and month of the year effect on returns at the NSE, while Mokua (2003) found no evidence of the weekend effect at the NSE. Atiti (2005) found that it was possible to generate abnormal returns at the NSE by using momentum strategies. These studies provide evidence for and against the weak form of efficiency.

Event studies have also been conducted in the NSE. For example, Aduda and Chemarum (2010) studied the reaction to stock splits at the NSE and found evidence of abnormal returns in the days preceding the split date. In contrast, Atogo (2010) found that the returns earned on stocks that had announced a split were not statistically significant after the announcement. This implied that there is no opportunity to make abnormal returns following a stock split announcement. Kakiya (2010) found evidence of abnormal returns following earnings announcement by companies in the NSE. The above studies provide mixed evidence of weak form efficiency of the NSE, warranting further research on securities market efficiency in Kenya.

In relation to relationship between automation and market performance, one study comes to the fore. Using prices of securities listed at the NSE, Mbugua (2007) identified the behaviour of volume, volatility and liquidity under three trading systems: manual trading, CDS and ATS with a view to determine whether automation had affected the three market characteristics, and revealed that automation was associated with increased volume of trading, increased volatility of quoted stocks and increased liquidity. Greater volumes of trade and volatility were noted when NSE was full automated compared to manual or partial automated systems. However though there was a noted increase in liquidity on introduction of CDS, but the liquidity declined on introduction of ATS.

Masinde et al., (2013) measured the effect of IPO announcement on market returns at the NSE using logistic regression method and found a positive effect. While Kariuki (2011) used non-parametric tests and found market reforms to have a positive effect on returns, Owido, et al. (2013) used general auto-regressive conditional heteroskedasticity (GARCH) approach and reported that market returns at the NSE were non-random as current returns were dependent on previous 3-day returns. Lastly, Mbuva (2010) and Maobe (2012) have also assessed the
challenges facing financial performance of Kenya stock broking firms and how their performance may affect market performance.

There has recently been an upsurge of activity in this market due to economic and legal reform, privatization and relaxation of restrictions on foreign investors (Ntil et. al., 2011) and automation of the trading and depository systems. With the recently installed CDS and an ATS at the NSE, the informational efficiency of the market is an issue of concern (Onyuma, 2009). However, all the above studies have not determined the possible impact of the automation of the trading system on market efficiency of the Nairobi Securities Exchange. It is therefore not evident whether NSE is efficient in the weak form or that the market automation has improved the market efficiency.

2.7 Conceptual Framework
Microstructure changes in the Kenyan securities market has been undertaken in stages. It began with the computerization of the central depository, clearance and settlement system; automation of the trading system, and installation of the broker back office system and the automated market surveillance system. Microstructure changes are within the control of Exchanges themselves and market regulatory authorities as opposed to macroeconomic changes, undertaken by the government through other entities like CBK. The NSE and CMA introduced a series of microstructure changes in the market in 2004, 2006, 2011, and 2012.

The automation and resultant trade execution speed of the trading process in a securities exchange have long been important dimensions of financial market design, and the growth of electronic trading in recent years has intensified the emphasis on these dimensions. Therefore, the introduction of the microstructure changes at the NSE was expected to improve the efficiency of the price discovery process by increasing liquidity and transparency. An efficient price discovery process would lower the required rate of return by investors and increase stock prices. Therefore, if microstructure changes have had a positive impact on price discovery process then returns in the post automation period would be higher than returns in the pre automation period, otherwise returns would be the same. The increase in liquidity and transparency should be expected to reduce volatility of returns. Thus, if reforms had a positive impact on the volatility of returns, then volatility in the post automation period would be lower than volatility in the pre automation period, otherwise the return volatility would be the same. Accordingly, the efficiency of the market will also change as a result of microstructure changes.
Figure 1 below illustrates the possible impact of microstructure changes on market returns, which may affect the efficiency of the securities market.

Figure 1: The Conceptual Framework of the Study

Source: Researcher (2013)

Where: $R_m = \text{Market returns}$;
$R_t = \text{Returns at period t representing the post automation period}$;
$R_{t-1} = \text{Returns at period t-1 corresponding to pre automation period}$.

Microstructure Changes:
- Trading system.
- Depository, clearing & settlement system
- Broker back office system
- Market surveillance system

Intervening factors
- Regulation
- Monetary policies
- Fiscal policies

$R_t \leq R_{t-1}$
Market automation has no positive impact on market returns.

$R_t \geq R_{t-1}$
Market automation has a positive impact on market returns.
CHAPTER THREE: RESEARCH METHODOLOGY

This chapter presents the research design for the study and indicates the population and the sampling procedure adopted. The methods of data collection and data analysis are also presented. Finally, it describes and presents the model used to analyse the data.

3.1 Research Design
This research used a longitudinal research design as it emphasises the status of time and the study of a phenomenon over time. It also involved taking repetitive measures overtime for the purpose of comparing efficiency in the pre-automation and post-automation periods. The use of the time is a design characteristic in which the extent of a phenomenon is measured after successive time period, and the effect of intervention influences are time related (Amin, 2005), and data is collected several times, before and after an intervention. This design was therefore suitable in analysing and comparing the behaviour of returns during these two periods

3.2 Population and Sampling
The NSE currently has sixty-one (61) listed firms. The Exchange however uses prices of twenty (20) large and mostly traded listed companies to compute its NSE 20-Share Index, whose construction began in 1966. The NSE currently has two market indices; the NSE 20-Share Index which is price weighted and an all inclusive NSE All Share Index (NASI) which is market capitalization weighted. Price weighted indices are based on a geometric mean of average prices of the constituent companies which are equally weighted. In line with best practice, the market indices are reviewed periodically to ensure that they reflect an accurate picture of market performance. Following a recent review, the NSE approved on 11th December 2009 the inclusion of the Cooperative Bank as an index constituent company in the Finance and Investment sector. The bank replaced Centum Investment (NSE, 2009). A similar review was also done in 8th December 2011 in which Uchumi Supermarkets Ltd replaced CMC Motors following its suspension from trading.

The review is conducted by looking for the best company warranting inclusion in the constituent firms forming the NSE 20 Share Index. The criteria for inclusion includes market capitalization, shares traded, number of deals, and turnover during the period under review. This criteria used in reviewing the indices involves weighting market performance measures for a
twelve-month period as follows: market capitalization 40 percent, shares traded 30 percent, number of deals 20 percent, and turnover 10 percent (NSE, 2011c).

The target population for the study therefore comprised of the companies forming the NSE-20 Share Index and appearing in Appendix I. The NSE-20 Share index is a value weighted index consisting of the 20 highly capitalized and most actively traded companies picked from the various Kenyan economic segments. The Index tracks the daily performance of the market and acts as an indicator of the general market performance. Since the NSE 20 Share Index is an already predetermined sample, there was no need for a sampling procedure for the study.

3.3 Data Collection
Using a data collection sheet (presented in Appendix II), daily secondary data on the NSE-20 Share Index was collected from the NSE appointed data vendor (Synergy Ltd.) – which has real-time access to the NSE database. The data collected was for 12 years spanning September 2000 to September 2012. In addition to covering the period during both the manual and automated trading environment, this period also represent when the Exchange experienced both subdued and superior trading activity when the Index recorded 980 points in 2001 and 6060 points in 2007. The use of a data collection sheet was most suitable because the NSE database, from which data vendors access the data, contains other types of market statistics and required extraction of the needed data type. Where there was lack of data on a particular trading day, the CMA Quarterly Statistical Bulletins were utilized to supplement such information. The data collected was then split into pre-automation period (11th September 2000 – 10th September 2006), constituting 1523 trading days, and post-automation period (12th September 2006 – 11th September 2012), constituting 1496 trading days. The key market microstructure changes implementation dates were obtained from the NSE and CMA media center archives and press release at www.nse.co.ke and www.cma.org, respectively.

3.4 Data Analysis
The daily return on the NSE 20- Share Index was then computed as the first difference of the logarithmic stock index, and a test conducted to determine whether they were related to different market microstructure conditions. The study used non parametric tests to assess the randomness and independency of the data. The advantage of nonparametric test statistics is that they allow the derivation of specific critical values by simulating the exact sampling distribution (Lagoarde-Segot and Lucey, 2008). Normality tests were performed using skewness, kurtosis and Ryan-
Joiner to test the distribution of returns. The efficiency of the market was tested using the non-parametric Runs test to uncover any return independency. Finally, the Wilcoxon signed rank test was then employed to determine the impact of automation on the price discovery process in the Kenyan securities market. All these tests were conducted using Minitab Software Package, version 17.

3.4.1 Computation of Market Returns
A key assumption underlying the use of logarithms is that returns are more likely to be normally distributed which is a prior condition for standard statistical techniques (Reilly and Brown, 2010, 2004). The daily return on the index \(R_t \) was computed consistent with (Washer, et al., 2011) as the first difference of the logarithmic price index as below (because stock price index movement is usually exponential from one period of time to another, rather than linear):

\[
R_t = (\ln P_t) - (\ln P_{t-1})
\]

(1)

\(R_t \) = Daily market returns for NSE 20-Share Price Index for day \(t \)

\(P_t \) = Is the closing value of the NSE 20-Share Price Index for day \(t \).

\(P_{t-1} \) = Is the closing value of the NSE 20-Share Price Index for day \(t-1 \).

\(\ln \) = Natural Logarithm.

The key assumption underpinning the use of logarithm in this study is that stock returns are not only lognormal, but also are traded on a continuous basis (Kalu, 2008; Simons and Laryea, 2004).

3.4.2 Normality Tests for the Distribution in Market Returns
The random walk hypothesizes that in an efficient market, successive residual increments follow a normal distribution (Kalu, 2009). The standard measures for deviations from normality are skewness and kurtosis. Theoretically, the skewness of a normal distribution is zero and the Kurtosis of a normal distribution is 3. Positive skewness means that the distribution has a long right tail and negative skewness implies that the distribution has a long left tail. If the kurtosis of a distribution exceeds 3, the distribution is peaked relative to the normal. However, if the Kurtosis is less than 3, the distribution is flat relative to normal.

There are also several tests for normality which uses different calculations, such as Anderson-Darling, Shapiro-Wilk, Ryan-Joiner and Kolmogorov-Smirnov (Currell and Dowman, 2009). Of
these, the Ryan-Joiner test is easier to perform and interpret (Ryan and Joiner, 1976). Thus, normality tests were performed using skewness, kurtosis and Ryan-Joiner test. Skewness was used as measure of asymmetry of the distribution of a series around its mean, while kurtosis was used as a measure of the peakedness or flatness of the distribution. Using the Minitab software package, the Ryan Joiner was further used to confirm whether the market returns were normally distributed. These measures have been widely used in other efficiency studies (Jefferis and Smith, 2005; Okpara, 2010; Kariuki, 2011; Kariuki and Onyuma, 2012).

3.4.3 Testing the Impact of Automation on Price Discovery Process
The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing two related samples, matched samples, or repeated measurements on a single sample to assess whether their population mean ranks differ – that it, is a paired difference test. It can be used as an alternative to the paired Student's t-test, t-test for matched pairs, or the t-test for dependent samples when the population cannot be assumed to be normally distributed (Mason et al., 2002).

The Wilcoxon signed rank test was employed to determine whether the change in market microstructure through ATS had a positive effect on the price discovery process. The null hypothesis tested was that the median returns earned before market automation was not significantly different from the median returns after market automation. Failure to reject the null hypothesis would mean that market automation had no impact on the price discovery process of the NSE.

In addition, Levene's test is an inferential statistic equivalent of the F-test and used to assess the equality of variances in different samples (Mason, et al., 2002). Some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption. It tests the null hypothesis that the population variances are equal – known as homogeneity of variance or homoscedasticity. If the resulting P-value of Levene's test is less than some critical value, typically 0.05, the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference between the variances in the population. Therefore, the Levene’s test was used to determine whether return volatility had reduced in the post automation period. The
Levene’s test is particularly robust where data is not normally distributed and can therefore be used to infer on the level of market efficiency.

3.4.4 Test for Market Efficiency
Runs test can be used to assess return distribution and infer on weak form efficiency. The test is regarded to be strong in capturing the random walk in prices as it disregards the properties of distribution. A run is a series of increasing values (+) or a series of decreasing values (-). Therefore, a runs test determines whether successive securities price changes are independent of each other (Reily and Brown, 2002). For instance, if price changes are positively related it would be more likely that a (+) sign is followed by a (+) and a (-) is followed by a (-).

Under the null hypothesis of runs test, a series of runs is said to follow a random walk if successive price changes are independent. If a series of runs does not follow a random walk (dependent), the null hypothesis is rejected. To determine whether a series is random, the expected number of runs was compared with the observed number of runs. In a random series the observed number of runs is closer to the expected number of runs. If the observed number of runs is fewer than the expected number of runs then the series may have positive autocorrelation. If the observed runs are more than the expected runs this may indicate negative autocorrelation. Thus, too few runs or too many runs indicate evidence against the random walk hypothesis (Reily and Brown, 2011). Again, runs tests have been extensively used to test for serial independence of stock returns (Dickinson and Muragu, 1994; Mlambo and Biekpe, 2005; Okpara, 2010).

3.5 Data Presentation
The study has used tables to present results of data analysis in order to ease comprehension of the results of the study and to make comparison between study periods.
CHAPTER FOUR: RESULTS AND DISCUSSION

This chapter presents the research findings and discusses the results with reference to the specific research objectives. The main objective of the study was to determine the impact of the microstructure changes of the market efficiency at the Nairobi Securities Exchange. It begins by presenting the descriptive results for normality tests, followed with results from the Wilcoxon signed rank test, Levene’s test and the Runs test, which were conducted both for the pre market automation and post market automation periods.

4.1 Test of Normality Distribution of Market Returns

The results from the skewness, kurtosis and Ryan-Joiner tests are presented in Table 1 below. The mean return in the post market automation period was higher than mean return in the pre market automation period. The negative mean returns in both periods are an indication of the subdued market activity in both the periods of analysis. Similarly, the median return in the post automation period was higher than the median returns in the pre automation period. The standard deviation in the post automation period was also higher than the standard deviation in the pre automation period.

Table 1: Normality Distribution Tests of Market Returns

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Pre Market Automation</th>
<th>Post Market Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.004983</td>
<td>-0.00564</td>
</tr>
<tr>
<td>StdDev</td>
<td>0.2178</td>
<td>0.2168</td>
</tr>
<tr>
<td>Median</td>
<td>0.0134</td>
<td>-0.00006</td>
</tr>
<tr>
<td>Skewness</td>
<td>-38.95</td>
<td>-38.54</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1515.15</td>
<td>1489.12</td>
</tr>
<tr>
<td>Ryan-Joiner</td>
<td>0.120</td>
<td>0.132</td>
</tr>
<tr>
<td>RJ (p-value)</td>
<td>< 0.010</td>
<td>< 0.010</td>
</tr>
<tr>
<td>Obsev (N)</td>
<td>1523</td>
<td>1496</td>
</tr>
</tbody>
</table>

Source: Data Analysis (2013)
The higher median return and standard deviation reported in the post market automation were also tested for significance. The random walk hypothesis posits that market returns should follow a normal distribution. In order to test for this property, the Skewness, Kurtosis and Ryan-Joiner tests were used. The results of these tests are presented in Table 1. The Skewness and Kurtosis values show likely departure from normality in both periods as none had a Skewness value equal to zero and Kurtosis value equal to 3. The returns in the pre market automation period are positively skewed, an indication that market returns in the pre market automation had a long right tail and slightly peaked. However, the returns in the post market automation period were negatively skewed, an indication that the returns had a long left tail with a relatively flat peak. Although both periods are considered bearish periods, the negative skewness value in the post market automation period shows a greater chance of extreme negative values while the positive skewness value in the pre market automation period imply a lesser chance of extreme negative values. These results are not surprising given that the NSE was adversely affected by the global financial crisis in 2008 (Kilonzo, 2008) and debt crisis of 2012, and the volatility was likely to arise from the changes in market microstructure following advances in the trading system.

A test for normal distribution was also conducted using the Ryan-Joiner test. The first null hypothesis of the study was that market returns in the two periods were both normally distributed. From Table 1 above, the p-values for the Ryan-Joiner tests for both the two periods are less than 0.01. This means that at 5 percent significance, the null hypothesis of normal distribution is rejected for both periods. This result confirms the earlier finding that returns in the pre and post market automation periods are not normally distributed. Although it would have been expected that returns after market automations to closely approximate a normal distribution, the results confirm that returns in the NSE exhibit stylized facts (Opong et al, 2010) – a characteristic of returns distributions, which are skewed and with fat-tails, and experience volatility clustering.

4.2 Impact of Microstructure Changes on Market Efficiency

4.2.1 Impact of Market Automation on Price Discovery Process
An efficient price discovery process ensures that investors realise the best prices for their stocks which should ideally be closer to the fundamental values. The introduction of market automation was expected to improve the efficiency of price discovery process by targeting liquidity and
transparency among other factors. Therefore, if market automations have had a positive impact on the price discovery process, investors would lower their required rate of return due to increased liquidity and transparency and in turn securities prices should appreciate. In other words, the returns earned in the post market automation period would be higher than returns earned in the pre automation period. To test whether automation had a positive effect on the price discovery process, the Wilcoxon signed rank test was used. The Wilcoxon signed rank test is a non parametric test for matched pairs and uses the median value. The null hypothesis was that returns in the post market automation period are not significantly different from returns in the pre market automation period. A one tailed test was carried out at 5 percent significance level. The results of the test are presented in Table 2 below.

<table>
<thead>
<tr>
<th>N for Test</th>
<th>Wilcoxon Statistic</th>
<th>P-Value</th>
<th>Estimated Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diff (Post -Pre)</td>
<td>1523</td>
<td>1307.1</td>
<td>0.0375</td>
</tr>
</tbody>
</table>

Test of median = 0.000736 Vs Median not > 0.00103

Source: Data Analysis (2013)

The results in Table 2 show a p-value of 0.037 while the alpha level for the test was 0.05. Therefore, the p-value was less than the alpha level for the test. Thus, at 5 percent significant level the study rejected the null hypothesis and concluded that returns earned in the post market automation period were higher than the returns earned in the pre market automation period. These results confirm that the introduction of market automation had a positive impact on the price discovery process. This finding is in line with other studies that have shown that the introduction of market automation, particularly touching on the trading system, did improve the efficiency of the price discovery process at the Bursa Malaysia Exchange (Sinnakkmiannu and Nassir, 2006). Green et al. (2002) also found positive price reactions due to improvement in liquidity following installation of BOLT in Mumbai Stock Exchange in India. Predictions of how market automation and faster order execution should affect the efficiency of price discovery are, however, mixed. In a limit order book, speed can decrease the noise in prices if traders with more extreme private values are more likely to obtain information about the current common value of the asset (Goetter et al, 2009).
The speed of trading in a securities market is important because delay induces uncertainty about the probability of order execution and the price at which such execution may occur. Traders’ risk aversion makes such uncertainty undesirable (Hendershott and Moulton, 2011). Even if securities traders are risk neutral, many trading strategies are usually more difficult to implement with slower trade execution platforms. Strategies contingent on prices, strategies involving simultaneous trades in multiple securities, and strategies which break larger orders into smaller orders all perform worse as order execution times increase. Boehmer, et al., (2007) find that a market centre receives more order flow when its reported execution speed increases.

If market automation and resultant trade execution speed reduce transaction costs, they should enable more efficient allocation of securities among heterogeneous investors, improve risk-sharing and consumption smoothing, and can raise asset prices (Acharya and Pedersen, 2005). Market automation and the resultant trade execution speed may also enhance price discovery - or how efficiently new information is incorporated into securities prices (Boehmer and Kelley, 2009). More efficient price discovery contributes to better informed financing and investment decisions, benefiting shareholders by facilitating better corporate decisions.

However, theoretical models of limit order books and liquidity provision offer ambiguous predictions regarding the impact of market automation and resultant trade execution speed. Existing literature compares speed across market structures (Boehmer, 2005) and levels of automation across market structures (Venkataraman, 2001), even though it is difficult to control for all differences across markets.

4.2.2 Impact of Market Automation on Market Volatility

In an efficient market, securities prices are closer to fundamental values. However, when a market experiences excess volatility it leads to price distortions and market prices may not reflect the fundamental values. Although market efficiency is an idealisation, interventions by market regulatory authorities, such as CMA, are meant to ensure that market prices closely approximate fundamental prices by touching on aspects such as liquidity and transparency. The introduction of market automation by the NSE was expected to increase liquidity and transparency thereby enhancing market efficiency. Therefore, market automations would have improved on market efficiency if there was reduced volatility in the post market automation period.

The study tested whether there was reduced volatility in the post market automation as compared to the pre market automation period. To test whether market automation has led to
reduced volatility, the Levene test was used. The Levene test is useful where data is not normally distributed and uses the median value in testing for equality of variances. The third null hypothesis of the study was that the variance of returns in the post market automation period was not statistically different from the variance of returns in the pre market automation period. A one tailed test was carried out at 5 percent significance level, and the results presented in Table 3 below.

Table 3: Results of the Impact of Market Automations on Volatility

<table>
<thead>
<tr>
<th>Method:</th>
<th>DF 1</th>
<th>DF</th>
<th>Statistic</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F – Test</td>
<td>1522</td>
<td>1495</td>
<td>3.752</td>
<td>1.000</td>
</tr>
<tr>
<td>Levene Test (any Continuous)</td>
<td>1</td>
<td>107</td>
<td>8.160</td>
<td>0.993</td>
</tr>
</tbody>
</table>

Null hypothesis: Variance (Post automation) / Variance (Pre automation) = 1
Alternative hypothesis: Variance (Post automation) / Variance (Pre automation) < 1
Significance level: Alpha = 0.05

Source: Data Analysis (2013)

The results in Table 3 above show a p-value of 0.993 while the alpha level for the test was 0.05. Thus, at 5 percent significance level, the study failed to reject the null hypothesis. This implies that volatility in the post market automation period did not reduce. Therefore, the results confirm that there was higher volatility in the post market automation period than in the pre market automation period. Other works such as Sioud and Hmaied (2003) found no significant effects on volatility or efficiency following automation of the Tunisian stock market. Lower level standard deviation would have been expected in the post market automation period especially due to increase in liquidity, transparency and the number of market players. The higher volatility in the post market automation period could be attributed to the changes in the trading system.

Other studies have also found that price volatility is more in continuous auction markets than call markets due to trading frequency (Chang et al, 1998). Moreover, market automation is likely to increase the speed at which information is reaching the market thereby causing prices to fluctuate rapidly as they converge towards equilibrium (Naidu and Rozef, 1994). Hendershott and Moulton (2011) found that market automation increases standard bid-ask spread measures of the cost of immediacy. With market automation, the spread widens just enough to compensate liquidity suppliers for the higher adverse selection. The increase in trading speed due to ATS may however, affect the cost of immediacy for traders. Introduction of ATS has therefore
reduced the floor traders’ advantages by increasing the anonymity of orders. The automated trading may also be providing faster feedback in terms of more up-to-date trades and quotes. These direct changes could also introduce indirect changes such as an increase in the working of orders and changes in the traders’ patience, order arrival rate, and incentives to acquire information.

Theoretically, immediate automated execution eliminates former floor traders’ – specialists and floor brokers – last-mover advantage through their ability to condition their actions on incoming orders (e.g., to observe the identity of broker submitting the order, the price and size of the order, and the state of the limit order book before deciding whether to trade with the incoming order). Anonymity and faster execution also facilitates the breaking of large orders into smaller pieces for execution, a strategy referred to as working an order. Back and Baruch (2007) show theoretically that large traders work their orders to hide their true demand by pooling with smaller traders. When all orders are worked, floor traders have no information advantage over traders in the limit order book, because floor traders cannot condition their trading decisions on the (unobserved) true demand underlying a market order. The increase in anonymity and speed in the automated market should increase the working of orders, reducing the information advantage of floor traders. This should result in smaller trades, lower floor participation, and less favourable trades for floor traders.

Although floor trading allows reputational benefits to arise from repeated human interaction on the trading floor (Battalio, et al., 2007), the reduction in floor trading brought about by the ATS makes reputations harder to sustain, which could lead to a breakdown in cooperation among colluding traders. Faster anonymous trading mechanisms has the ability to attract more informed trading (Barclay, et al., 2003). Faster execution in the ATS increases transparency by providing traders more up-to-date information about the state of the market. This could increase the ability of liquidity demanders to more closely monitor the market for temporary mis-pricings (Foucault, Roell, and Sandas, 2003). The resulting higher adverse selection may raise the cost of immediacy for liquidity demanders as they impose higher adverse selection costs on liquidity suppliers.

In fact, greater transparency can also lead to more competition in liquidity provision and lower costs of immediacy (Baruch, 2005). Therefore, ATS introduction provides insight into the trade-off between greater speed and automation, thus increasing adverse selection in liquidity demand, and increasing competition in liquidity supply. Hendershott and Moulton (2011) have
also reported that spreads and adverse selection increase with market automation and that liquidity supplier profits do not decline, which are consistent with ATS having a more significant effect on liquidity demand than liquidity supply. It may also be true that order arrival rates at the NSE have increased with ATS introduction. Foucault, et al (2005) have identified two competing effects of an increase in order arrival rates. First, with higher arrival rates when limit orders are placed they improve the best price less, which would lead to spreads increasing in arrival rates. Second, the faster arrival rates reduce the expected waiting time for orders in the queue so that limit orders require less compensation for delayed execution.

4.3 Test for Improved Market Efficiency

4.3.1 Run Test of Independency in Market Returns
In Section 4.2.1, the study found that the introduction of automation had a positive impact on the price discovery process. Similarly, in Section 4.2.2, the study showed that the introduction of the ATS had increased execution speed on the NSE and may have led, probably, to higher costs of immediacy as adverse selection rises. The increase in the execution speed and informativeness of securities trades could also affect the efficiency with which information is incorporated into prices, depending on the balance between increased competition in liquidity provision, as in Goettler, et al. (2009) and the diminished role of a quasi-monopolist liquidity supplier, as in Leach and Madhavan (1993).

Therefore, the study tested whether market automation has led to improved market efficiency at the NSE. The non-parametric runs test was used to assess the efficiency of the market in the pre market automation and post market automation periods. This test ignores the properties of the distribution and is robust especially where data is not normally distributed. If market automation had improved market efficiency, then the speed at which information is incorporated into securities prices should increase and so returns should become more random. The fourth null hypothesis of the study was that market returns in the two periods were random and independent from one another. The runs test was performed using the median value, with the results for the pre market automation period presented in Table 4 below.

From Table 4 below, the observed number of runs was 720 while the expected number of runs was 762. The observed number of runs was closer to the expected runs which imply randomness in the return series. Additionally, the runs test results reveal a p-value of 0.0530.
which is greater than the selected alpha level of 0.05. Therefore, at 5 percent significance level the study failed to reject the null hypothesis. This implied that the returns in the pre market automation period followed a random walk.

Table 4: Results of Run Test for the Pre Automation Period

<table>
<thead>
<tr>
<th>Run Tests</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runs above and below K</td>
<td>-0.00806318</td>
</tr>
<tr>
<td>The observed number of runs</td>
<td>720</td>
</tr>
<tr>
<td>The expected number of runs</td>
<td>762</td>
</tr>
<tr>
<td>Observations above K</td>
<td>769</td>
</tr>
<tr>
<td>Observations below K</td>
<td>754</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0530</td>
</tr>
</tbody>
</table>

Source: Data Analysis (2013)

Similarly, the runs test results for the post market automation period presented in Table 5 below reveal that the observed number of runs was 360 while the expected number of runs was 506. The observed numbers of runs are closer to the expected numbers of runs implying randomness of returns. Similarly, the p-value for the post automation period was 0.067, which is greater than the selected alpha level of 0.05. Therefore, at 5 percent significance level the study failed to reject the null hypothesis. This indicated that the returns in the post market automation period also followed a random walk.

Table 5: Results of Runs Test for the Post Market Automation Period

<table>
<thead>
<tr>
<th>Run Tests</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runs above and below K</td>
<td>-0.00563775</td>
</tr>
<tr>
<td>The observed number of runs</td>
<td>360</td>
</tr>
<tr>
<td>The expected number of runs</td>
<td>506</td>
</tr>
<tr>
<td>Observations above K</td>
<td>1174</td>
</tr>
<tr>
<td>Observations below K</td>
<td>322</td>
</tr>
<tr>
<td>P-value</td>
<td>0.067</td>
</tr>
</tbody>
</table>

Source: Data Analysis (2013)

Although results in both periods indicated that returns follow a random walk, a closer look at the results of the two periods showed that the number of observed runs in the post automation period was much closer to the expected number of run than it was in the pre market automation
period. This was also reaffirmed by the higher p-value of 0.0670 in the post market automation as compared to the p-values of 0.0530 in the pre market automation period. Therefore, these results confirm that returns were more random in the post market automation period, an indication of improved market efficiency. These findings are in line with others that have reported positive gains in efficiency with the introduction of market automation (Maghyereh, 2005; Sunday, 2011; Debysing and Watson, 2007). However, the findings differed with those by Freund and Pagano (2000) who found non-random price behaviour for some stocks at the Toronto and New York Stock Exchanges following microstructure changes.

The volatility of the efficient price provides a measure of whether volatility increases reflect a change in the amount of information being incorporated into prices or an increase in noise. The increase in the efficient price volatility over the period following introduction of the ATS indicates that the higher volatility is not simply noise, but reflects information being incorporated faster into prices. If prices follow a random walk, the number of observed runs should be equal or closer to the number of expected runs from a random return series, thus measuring the extent to which returns diverge from a random walk in either direction, so a decline in the difference between the observed and expected number of runs would indicate an increase in price efficiency, suggesting that price efficiency improves with the introduction of ATS. These findings are consistent with Goettler, et al (2009), Jallow (2009) and Sunday (2011) predictions that price efficiency improves with market automation at the New York Stock Exchange, West African exchanges (Ghana and BVRM), and the Nigerian Stock Exchange, respectively.
CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the research findings, presents the conclusions derived from the data analysis and the findings, and makes recommendations for improving the efficiency of the securities markets in Kenya, and proposes further area of research.

5.1 Summary of the Findings
The NSE initiated a number of microstructure changes in the market beginning 2004 aimed at improving market liquidity and efficiency, reducing transaction costs and information asymmetry, in addition to increasing market turnover. This study examined the impact of microstructure changes automations on market efficiency by constructing two sub samples representing the pre market automation and post market automation periods.

To begin with, non parametric tests performed, in addition to other descriptive analysis, show that the mean returns in the post automation period was higher than the mean returns in the pre market automation period. The post market automation period was characterised by a higher standard deviation of returns than the pre market automation period. Normality tests through Skewness, Kurtosis and Ryan-Joiner test were conducted. Regarding Skewness and Kurtosis, the pre market automation period was found to be positively skewed and leptokurtic while the post automation period was found to be negatively skewed and platykurtic. This is an indication that market returns in both the periods are not normally distributed. A further analysis through the Ryan-Joiner test also confirmed these findings.

Secondly, the Wilcoxon Sign Rank test was used to perform a test of significance to determine whether the microstructure changes undertaken by the NSE had a positive impact on the price discovery process. The study advanced the thesis that if automation has improved the price discovery process, then the prices in the post market automation period would be higher than the pre market automation period. The Wilcoxon Signed Rank test was therefore used to test whether returns in the post market automation period were higher than returns in the pre market automation period. The results revealed that that returns in the post market automation period were higher than returns in the pre market automation period. This implies that automations in the NSE have had a positive effect on price discovery process.

Furthermore, the Levene’s test was used for market volatility. The study had argued that the introduction of market automation would lead to reduced market volatility in the post market
automation period. However, the results showed that market volatility was higher in the post market automation period than in the pre market automation period, implying that market automation has not reduced volatility in market returns.

Lastly, a runs test was performed on the pre market automation and post market automation periods to uncover any independency in returns. The results indicate that the market followed a random walk in both the periods. However, the efficiency of the market seemed to have improved in the post market automation period, an indication that market automation had resulted into improved market efficiency.

5.2 Conclusions of the Study

The objective of this study was to determine the impact of market automations on market efficiency in Kenya. The results indicate that mean market returns in the post market automation period were higher and more volatile than those in the pre market automation period. This higher market returns can be attributed to improved price discovery process, while the higher volatility may be due to changes in market microstructure – the trading system. The results from normality tests also show that market returns are not normally distributed in both the periods, though it would have been expected that the post automation period would have closely approximated a normal distribution. As to the efficiency of the market, the runs test results reveals that market returns are more random in the period following automation than the prior period. This implies that the market has improved in efficiency.

These results corroborate the findings by Cornelius (1994), who argued that when a market first starts trading, it takes time for the price discovery process to become known. As markets operate and market microstructures develop, emerging stock markets are likely to become more efficient. The changing efficiency in the two periods also provide support for the adaptive market hypothesis which states that market efficiency undergoes cycles overtime as influenced by environmental factors, in this case, automation of the trading system. The general conclusion of the study is that introduction of automation in the Kenyan securities market has led to improved market efficiency, thereby providing support for the adaptive market hypothesis.

It was observed that the NSE’s introduction of its ATS increased its automation process and speeded up electronic trading. This must have led to a drop in the execution time for market orders, with the power to raise the cost of immediacy – the effective price spread and this increase may be attributable to higher adverse selection. The increase in adverse selection is
accompanied by information being incorporated into prices more efficiently. Price efficiency is a public good that can inform corporate investment and financing decisions. A faster market can also enhance welfare by reducing risk-averse traders’ uncertainty about the probability and price at which execution may occur. Furthermore, faster trading can facilitate more complex trading strategies.

Moreover, the cost of immediacy is a zero-sum transfer from liquidity demanders to liquidity suppliers. Calculating the aggregate welfare effects of changes in the cost of immediacy in markets with heterogeneous market participants requires a structural model with numerous assumptions about traders’ utilities and strategies. If all traders follow the same strategies before and after the introduction of the ATS, the adverse-selection-driven increase in the cost of immediacy implies transfers from uninformed to informed traders. Greater losses by uninformed traders can hinder risk-sharing. However, if ATS lowers the cost of information acquisition and more extreme private-value traders choose to become informed, then risk-sharing could be enhanced. The potential positive and negative welfare impacts of changes in the cost of immediacy preclude sharp determinations of the overall welfare impact of increasing order execution speed.

The main goal of the NSE and CMA is to enhance competition between markets and market intermediaries. By allowing faster markets to replace slower manual trading markets, the regulator investor protection rules effectively preclude traditional floor trading because human interaction is too slow. The laudable goals of the NSE is to give investors, particularly retail investors, greater confidence that they will be treated fairly when they participate in the securities markets, and to promote deep and stable markets that minimize investor transaction costs. Increasing the speed of order execution and the efficiency of prices formation likely gives investors greater confidence of fair treatment, but the move to faster electronic trading may raise the cost of immediacy through the adverse selection. Thus it may be challenging to meet both of these goals.

5.3 Recommendations for Improving Market Efficiency
The findings of this study are of importance for policy making, especially those interested in improving the efficiency of the Kenyan securities market. The main implication of the study is that stock market automation is important in enhancing market efficiency. Market efficiency is a multi faceted issue and can be enhanced by increasing market liquidity and transparency,
reducing transaction costs and removing impediments to market access. Although variants of automations have been introduced in the Kenyan securities market to address liquidity and transparency, the market turnover is still low, as evident in the CMA first Quarter Bulletin of 2013, and access to the NSE by retail investors is still limited as all the stock broking firms are still located in Nairobi. Avenues worth considering include licensing more market makers, adoption of a hybrid trading system, introducing online and internet securities trading in Kenya, and harnessing the thriving mobile money transfer and payment systems.

First, Kenya has increasingly embraced ICT which may be attributed to the comparative lower cost of access to internet via computers. Therefore, the NSE and CMA should consider pursuing full market automation of the market through adoption of both online and internet securities trading. Through these, investors would not have to travel to Nairobi where the brokers have offices to trade in securities, but can rather log into the online trading platforms operated by brokers wherever they are and be able to access the electronic order book within the ATS of the NSE. One area worth considering is the use of the Internet. Internet stock trading has been a success in developed securities markets in Europe and North America.

Therefore, to improve liquidity, securities markets policy makers should consider this avenue. In fact, information and communication Technology (ICT) has made information describing the macro and micro environment of economies readily accessible to stakeholders making them better placed to access and act in markets in accordance with changing dynamics in the environment (Pal and Mittal, 2011). ICT is therefore expected to play a big role in making security markets efficient by driving security prices closer to their true values and therefore erasing trading patterns. This may result in the market becoming more efficient as information is readily and equally available and buyers are able to value securities fairly. This development would have the effect of increase the number of rational buyers in the market, none of whom can influence prices in the market, thus making the market more efficient.

Moreover, the adoption of a hybrid trading system can also assist in improving market liquidity. Other securities markets, such as the Tunisian Stock Exchange and NYSE have both a call and continuous system. The call system has been found to be more effective when dealing with thinly traded stocks while the continuous system is suited for heavily traded stocks. The market can open with the call system and then later changes to a continuous system for liquid
stocks. This recommendation is in line with the evidence in NYSE hybrid trading (Hendershott and Moulton, 2011).

Furthermore, the licensing of more stock dealers – the market makers – can assist in improving liquidity. The NSE operates as a continuous limit order market where brokers receive potential buy/sell orders that are submitted in the automated trading system to be matched. This system suffers from one major weakness, the lack of immediacy. The lack of immediacy may result in order imbalances, which may lead to large price changes primarily because there is no party to stand ready to buy or sell the securities, and this is where market dealers become important.

In addition, Kenya has also been experiencing drop in the cost of accessing the Internet through mobile phone technology. Therefore, the CMA and NSE should work with the ICT industry practitioners in order to harness the benefits of mobile telephony so that the thriving mobile money financial framework can be meshed with the broker payment systems together with ATS and CDS in order to enable the securities buying, selling and making payments for such transactions through mobile money transfer system such as M-Pesa, yuCash, Orange money and Airtel Money services and other emerging mobile money transfer platforms, such as Tangaza. The end result will be increase in market activity, enhanced liquidity and transparency, and heightened investor confidence, thus leading to improvement in securities market efficiency.

Lastly, the Exchange should however look to enhance its IT security infrastructure to secure online access to NSE systems by internal and external users. To benchmark NSE systems against best practice, the Exchange should also subject its security systems to audit by an independent and reputable third party. This is necessary given that the installation of the CDS in Kenya has witnessed an upsurge in fraudulent trading activities undertaken by brokers. Indeed, the electronic trading and depository systems have not stopped human manipulation to personal advantage, both by brokerage and CDSC staffs, despite the promised efficient monitoring of transaction and audit of broker activities.

5.4 Recommendations for Further Research
This research evaluated the effect of overall market automations on market efficiency. In future studies can be done on the specific market automations (CDS, BBO, CMS) to determine whether the results would be the same. The research could also be extended to individual stocks to determine whether the results would be similar. There are other advanced statistical tests which
have been developed, like GARCH models, Symbolic Time Series Analysis (STSA) and Rescaled Range Analysis, which can be used to confirm the findings. To further confirm that microstructure changes at the NSE have indeed improved market efficiency, future research could also consider the application of time series analysis such as the auto-covariance ratio estimation (ACRE) and auto-regressive moving average (ARMA) models to assess the time to equilibrium (TTE) for individual stocks – the number of days it takes for the NSE to reflect all the information into securities prices.
REFERENCES

NSE (2012b) Speech by NSE Vice Chairman Mr. Bob Karina During the Launch of The NSE Broker Back Office at Nairobi Securities Exchange Trading Floor, on Wednesday September 5th 2012.

Walras, L. (1880), La bourse, la spéculation et l’agiotage, Bibliothèque Universelle et Revue Suisse.

APPENDICES

APPENDIX I:

Table 6: Companies Constituting the NSE-20 Share Index as at 1st October 2012

<table>
<thead>
<tr>
<th>Sector</th>
<th>Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Sector</td>
<td>Rea Vipingo, Sasini</td>
</tr>
<tr>
<td>Automobiles and Accessories Sector</td>
<td>CMC Holdings</td>
</tr>
<tr>
<td>Commercial and Service Sector</td>
<td>Express Kenya, Kenya Airways, Nation Media Group</td>
</tr>
<tr>
<td>Telecommunication and Technology Sector</td>
<td>Safaricom</td>
</tr>
<tr>
<td>Construction and Allied Sector</td>
<td>Athi River Mining, Bamburi Cement</td>
</tr>
<tr>
<td>Manufacturing and Allied Sector</td>
<td>British American Tobacco, East African Breweries, Mumias Sugar</td>
</tr>
<tr>
<td>Energy and Petroleum Sector</td>
<td>Kenol Kobil, KenGen</td>
</tr>
<tr>
<td></td>
<td>Kenya Power and Lighting Company</td>
</tr>
</tbody>
</table>

Source: NSE (2012)
APPENDIX II:

Table 7: Data Collection Sheet

<table>
<thead>
<tr>
<th>Trading Date (DD,MM,YY)</th>
<th>NSE 20 Index value (in points)</th>
<th>LN (PI_t)</th>
<th>LN(PI_{t-1})</th>
<th>R = LN (PI_t) - LN(PI_{t-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>