MFI mice infected with *Plasmodium berghei* showed an age related resistance to malaria infection. The young MFI mice aged between 30-54 days were more susceptible compared to those above 60 days of age, which showed some recovery from infection. The mean time of death post inoculation with
2 x 10^6 *P. berghei* infected erythrocytes in susceptible mice was related fashion. Similarly changes in spleen lengths and weights were characteristic as indices of splenomegaly in malaria in these hosts.

Mice on aflatoxin B1 supplemented diet developed a relatively lower parasitaemia although they showed no significant changes in proportion of leucocytes and erythrocytes. Aflatoxin B1 appeared to control development of parasitaemia in vivo apparently without causing retardation of parasite growth. An argument was advanced that dietary aflatoxin B1 mediated suppression of *P. berghei* parasitaemia in MFI mice was equivalent to antidisease immunity manifest in asymptomatic school children in *P. falciparum* malaria endemic areas of the world. The implications of these findings to malaria vaccine development is speculative but requires attention while prototype malaria vaccines are undergoing human trails.