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DEFINATION OF TERMS

Autoregressive model It is a model that uses previous observations in time series as

an input to a regression equation to forecast the current observation of the time

series.

Categorical variable It is a finite variable that represents two or more groups.

Cross sectional model It is a model applied when observations are assembled across

respondents at an exact time only.

Dynamic panel model It is a model applied when observations are assembled across

individuals and over a span of time.

Latent variable model It is any statistical model that considers the presence of a

latent variable that expresses the association among response variables.

Ordered Probit model It is a model that supports the statistical association between

dependent variable with independent variables as in ordinary least square

regression. In contrast to ordinary least square regression it recognizes the

uneven difference among the discrete ordered values.

Ordinal value A discrete variable whose values are well arranged with respect to a

particular property.

State dependence It is the dependence of current choice on previous choice.

Zero inflated model It is a distribution that permit zero responses that are greater than

expected.
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ABSTRACT

The Zero inflated ordered categorical data with time series structure are often a
characteristic of behavioral research attributed to non-participation decision and zero
consumption of substances such as drugs. The existing Semi-parametric zero inflated
dynamic panel probit model with selectivity have exhibited biasness and
inconsistency in estimators as a result of poor treatment of initial condition and
exclusion of selectivity in the unobserved individual effects respectively. The model
assumes that the cut points are known to address heaping in the data and therefore
cannot be used when the cut points are unknown. The Simulated maximum likelihood
was applied to evaluate the double integrals in the Semi-parametric zero inflated
dynamic panel probit model. This procedure could be very time-consuming even with
fast modern computer and imprecise even with the use of modern simulator like
Halton simulators. The aim of this research was to develop the Zero inflated dynamic
panel ordered probit models with independent and correlated error terms to address
the above challenges. Interpretation of the coefficients in the proposed models were
extra difficult than in the normal regression scheme because a shift in one of the
variables in the equation is conditioned on other variables and their parameters.
Average partial effects that gave the effects on the particular probabilities per unit
change in the covariates was proposed to address the above challenge. The integrals
were evaluated using Two step Gauss Hermite quadrature that is five times faster than
the Simulated maximum likelihood. Since the solutions are not of closed form,
maximum likelihood estimation based on Newton Raphson algorithm and Bayesian
approach were used to estimate the parameters of the proposed models. Monte Carlo
simulations were conducted to investigate the theoretical properties of the estimators
of the developed models. Using National Longitudinal Survey of Youth (1997) dataset
sponsored by the Bureau of labour Statistics of the U.S. Department of labour with
zero inflation, the study investigated the determinants of smoking tobacco among the
youths. The study found that the proposed models produced consistent estimators and
their estimates were more accurate than the Dynamic panel ordered probit model
estimates. The proposed models fitted the data better than dynamic panel ordered
probit model in both classical and Bayesian approaches in the simulated data. The
study found positive associations between the initial period participation decision and
consumption levels observations and unobserved latent participation decision and
consumption levels. Therefore, this indicated that it is essential to control for
participation decision and consumption levels at the initial period. The models
showed a strong and significant positive state dependence in both participation
decision and at various consumption levels. The unobserved individual effects
accounted for 49.90% of the unexplained variation in decision to participate in
smoking and 47.65% of the unexplained variation at all levels of consumption. The
main causes of persistence in smoking decision were the state dependence,
unobserved heterogeneity and race while the main causes of persistence at
consumption level were state dependence, unobserved heterogeneity, gender and age.
The study is significant to policy analyst in identifying the socioeconomic and
demographic factors associated with drug abuse and providing useful information to
facilitate well-targeted public health policies.
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CHAPTER ONE

INTRODUCTION

A brief discussion on the background of the study, statement of the problem, main

objective, specific objectives, significance and the literature review are presented in

this chapter.

1.1 Background

Many studies involve collecting data that are either continuous or discrete on one or

more than one outcome from a given subject. The discrete data may be either nominal

or ordinal. Categorical data includes gender, marital status, age group, satisfaction

levels etc. Nominal outcome consists of outcome that represents groups or categories

without any given order e.g. gender (male or female) while ordinal outcome

represents groups or ranked categories e.g. education level (Primary, Secondary,

Diploma, Degree, Masters, PhD).

Ordered categorical observations are assembled in various fields such as international

conflict studies, behavioral research, biomedical research etc. According to Kostecki-

Dillion et al. (1999), responses based on severity of migraine can be classified as none,

mild, moderate, severe and intense and assumes values 0, 1, 2, 3 and 4 respectively.

According to Murphy et al. (2008), responses based on the clients consumption of

cocaine can be classified as none users, monthly users, weekly users and daily users

and assumes values 0, 1, 2, 3 and 4 respectively. Similarly in social and behavioral

research, attitudes of the respondents towards life satisfaction by Hasegawa (2009) or

satisfaction with healthcare services by Gallefoss and Bakke (2000) and Williamson

et al. (1995) are evaluated on a Likert scale from very dissatisfied to very satisfied.

Self-assessed health condition by Contoyannis et al. (2004) is 1 denoting very poor to

5 denoting excellent.

Latent variable models are common in areas such as behavioral studies .It is a

probabilistic model that decodes concealed forms in the observed data or

representation that considers the existence of a latent variable that describe the
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association among reported observations. These models include structural equation

models, latent class models and item response theory models. Bartholomew (1983)

categorized the models into three classes’ namely latent trait analysis, latent profile

analysis and latent class analysis. In latent class analysis and latent trait analysis

models, reported observations (indicators) are binary or ordinal variables and their

conditional distributions are considered either binomial or multinomial. In latent class

models, a continuous underlying latent variable is replaced by a discrete variable with

“classes” that represents classes of homogeneous individuals. They identify

unobservable sub groups within a population.

Liu and Agresti (2005) proposed to model ordered data in such a way that each

ordinal variable is standing for a categorized form of an underlying continuous

random variable. The ordinal data are created by putting cut points on continuous

variables. For instance, the rank of a learner in a certain subject is A if the scores lies

in the interval 70-100, B if the scores lies in the interval 60-69, C if the scores lies in

the interval 50-59 , D if the scores lies in the interval 40-49 and F if the scores lies in

the interval 0-39. The difference between the levels is inconsequential. It is only

considered that an individual who choses one level had abundant characteristics in

that level than if he/she had chosen a lower level, but the magnitude is unfamiliar to

us. This approach is useful when the exact measurement is impossible or

inconvenient; for instance, a patient depicts his/her health condition as poor, normal

or good. There is a tendency of analyzing ordinal data as if they were continuous or

binary with two responses, that is, Yes or No. The ordinal values do not have metric

properties. Average, standard deviation and covariance of ordinal values lacks

meaning due to absence of origin or unit of measurements. According to Fielding and

Yang (2005), this may either lead to lose of information and efficiency or results into

biased estimates and in some cases, numerical convergence might fail.

Time series data involving ordered categorical data are often encountered in

numerous studies. In addition, temporal correlation normally occurs between adjacent

observations in data gathered over period. The observations obtained by collecting the



3

behaviour of entities e.g. individuals, countries etc. at cross sectional and multiple

time units are referred to as Panel data. According to Park (2012), Panel data (also

known as longitudinal) is a dataset in which the behaviours of units such as countries,

companies, individuals etc. are surveyed across time. Its main benefit is the ability to

permit greater adaptability in modelling variations in behaviours across individuals.

This is because of collecting recurring observations from the same individual over

time. Hence, the impetus for using a panel dataset is its ability to control for

unobserved individual effects. The benefits from panel data occur in association with

extra assumptions, which enlist some form of stability in the time pattern of options

and constraints on the number of outcomes per unit. The panel data possess a large

number of observations that gives more informative data, less multicollinearity, more

degree of freedom and a higher efficiency of estimates. It is also possible to separate

between cohort, period and age effects. The longitudinal data improve the

possibilities of evaluating the effects of policy interventions and it is possible to

determine under which conditions the effects can be interpreted as casual effects. The

availability of panel data allows us to estimate treatments effects consistently without

assuming ignorability of treatments and without an instrumental variable, provided

the treatment varies over time and is uncorrelated with time varying unobservables

that affect the response. The limitations of panel data are the presence of attrition,

time varying sample sizes and structural changes. Panel surveys are also labour and

cost intensive. The merits of panel model are now well grounded in empirical

research such as household-level demand and labour supply decisions, workers’ wage

processes, firm-level productivity, or cross-country determinants of economic growth

etc.

However, the empirical success of panel data is limited to linear models and special

nonlinearities, for which a more or less complete understanding of identification and

inference is available. Unobserved individual heterogeneity can be specified using

fixed and random effects models. The fixed effects model permits the individual

effects to be related with the covariates while random assume the individual effects
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are unrelated with the covariates. The limitation of a random effects approach is

imposition of strong assumption of independence between the unobserved individual

effects and explanatory variables. The initial condition problem is the other weakness

of a random effects approach when estimating the dynamic ordered probit model. The

random effect represents the random intercept in the model. However, the strong

assumption in the random effects approach is relaxed in fixed effects approach.

Despite this advantage, the fixed effect is rarely used due to the difficulty of solving

the incidental parameters problem, that is, for every respondent that join the sample

the number of parameters to be evaluated increases at a one-to-one rate as discussed

by Neyman and Scott (1948). There is certainly no possibility of constructing a

log-likelihood with a fixed T that allow us to consistently evaluate unobserved

individual effect. It can only be constructed when T tend towards infinity. This

implies that individual-specific fixed effects cannot be regarded as parameters to be

evaluated due to incidental parameters problem. This influences the analysis of the

degree of state dependence and average partial effects.

The ordered probit model and ordered logit model are commonly used to analyse the

ordered categorical data. The logit link function is used by ordered logit model while

the inverse normal link function is used by ordered probit model. Zero inflated Ordered

probit model easily allows the modeling of the correlation between the error terms in

binary probit model and the ordered probit model while Zero inflated ordered logit

model cannot lend itself easily to allow for correlation between the error terms in

binary probit model and the ordered probit model. The logit model cannot be used

with panel data when unobserved factors are correlated over time.

The Ordered probit model has ability to provide the statistical significant relationship

between the study variable with covariates as in ordinary least square regression. In

addition, unlike ordinary least square regression, it is able to identify the unequal

difference between the levels of the categories. OP model is stipulated in relation to

correlated or uncorrelated univariate and multivariate normal distribution of the

underlying continuous latent variables that appears as ordinal variables by
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discretization.

Often, when assessing unusual tendencies like consumption of prohibited drug,

international conflict, severity of migraine etc. presence of zero inflation occur due to

non-participation, presence of peace, absence of migraine, zero consumption etc.

According to Lambert (1992), the zero inflation implies zero responses that are

greater than expected or the number of zeros surpass what the model would normally

produce. The zero inflated model is a statistical model that permit zero responses that

are greater than expected and account for them by incorporating their origin.

Harris and Zhao (2007) showed that OP model has restricted ability in expounding

the source of excessive zero responses, particularly when the zeros are related to the

dual and separate systems. In the circumstances, where we are dealing with an

unusual but legal behaviours such as smoking of cigarette, a zero may be recorded for

non-user who reports zero consumption because of their religious norms, state of

health or moral stand. Another zero may be recorded for an active user whose current

consumption is zero due to government policy that ban the smoking of cigarette in

certain places, low income, high cost of cigarette or in rehabilitation center. However,

this user may become an active consumer if he/she is around the smoking zones,

prices are lower or income is higher. Hence, the zeros from non-participant and

participant who report zero consumption are influenced by distinct systems of

consumer behaviours. The users who report zero consumption are possible users and

possess characters identical to those of the active users and are likely to become active

users when the price are lower or income is higher. The bona fide non-consumers are

expected to possess an absolute inelastic cost and income demand schedules, and are

influenced by distinct systems associated with norms, state of health and moral

stands. If such underlying systems are not considered, it could nullify any ensuing

policy issues. Similarly, the covariates, in addition, could exhibit distinct impacts on

the binary underlying systems. For instance, the impact of income on smoking of

cigarette, higher income, as a measure of wealth, may increase the likelihood of users

who report zero consumption to smoke. However, for non-users, higher income will
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have an inelastic effect on them.

The traditional OP model that uses a single latent equation will conceal the

differential effect between the non-user and active user whose current consumption is

zero. Harris and Zhao (2007) proposed using the likelihood approach a ZIOPC model

that considered the non-participation, zero consumption and active participation

distinct systems of consumer behaviours and applied the binary probit model for

participation level and OP model for consumption levels.

The Bayesian and Maximum likelihood estimations techniques are normally

employed to evaluate the parameters of a model. In Maximum likelihood estimation,

the parameters are fixed but unknown. We obtain point estimates while interval

estimates relies on the accuracy of the procedure and not on the parameter. In the

Bayesian approach, the parameters are random but still unknown. Here, we obtain the

whole distribution of parameter estimates and their variability. The Bayesian statistics

views probability as a degree of belief while classical views probability as relative

frequency observed during many trials. Classical approach is interested in a certain

interval’s inclusion of a parameter’s real value called confidence interval. Bayesian

approach is interested in the probability of a certain interval’s inclusion of a posterior

distribution’s mean called credible interval.

Dynamic latent variable models requires solving integrals that are intractable.

Numerical approximations such as simulation and two-step Gauss-Hermite

quadrature technique by Lee and Oguzoglu (2007) and Kano (2008) and Raymond et

al. (2007) respectively represent possible solutions to this problem. In simulation

method, as pointed by Mulkay (2015), the computation is very time-consuming and

imprecise even with the use of modern simulator like GHK or Halton simulators.

Gaussian quadrature proposed by Raymond et al. (2007) is favoured in evaluating the

two-dimensional indefinite integral since it perform well for even a small number of

nodes and weights.

According to Park (2012), Bayesian theory relies on prior distribution and likelihood

function. The prior distribution relies on data collected from previous studies, expert
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opinion, distributions that denote preceding information or even a latent variable

rather than an observable variable. It is then improved by merging it with observed

data that is denoted by a likelihood function. This produces a posterior probability

distribution that merges the prior distribution and likelihood function to form a single

probability distribution. Prior and posterior distributions are called conjugate

distribution in case they come from the same family such as normal distribution. The

conjugate distribution produced have a closed form. There are two types of conjugate

prior namely informative and non-informative conjugate prior. Informative conjugate

prior convey specific and definite information about a variable. Non-informative

conjugate priors are used when one has little or no knowledge about the data and

hence has the least effect on outcomes of the analysis. Non-informative conjugate

priors simplify resampling using MCMC algorithm and possess attractive

convergence properties.

Albert and Chib (1993) introduced a data augmentation that simplify the fitting of the

Bayesian probit model by simulating draws from the posterior distribution via Gibbs

sampling. Bayesian inference heavily depends on high-dimensional integration over

the posterior distribution to make inference on the parameters that make it difficult to

calculate analytically. This difficult is solved by simulation-based integration called

MCMC algorithm that permit us to draw samples from posterior distributions by

creating a Markov chain that has the target distribution as its equilibrium distribution.

The discovery of MCMC algorithms has made Bayesian approach more approachable

due to availability of cheap and high computing power. The advantages of Bayesian

approach are the ability to incorporate prior knowledge formally into data analysis

and MCMC algorithms can easily obtain important parameters for policy decisions

such as elasticity and marginal effects.

Gurmu and Dagne (2012, 2009) extended Harris and Zhao (2007) work to Bayesian

inference for univariate ZIOPC model and Bivariate ZIOPC model respectively. They

demonstrated using the Deviance Information Criterion that accounting for the zero

inflation in the ZIOPC present a better fit than ordered probit model. They also found
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that ignoring the zero inflation may lead to model misspecification and concealing the

differential results independent variables have on non-participant versus participant

at different stages of consumption, including non-consumption. In addition, if the two

zeros are not modelled correctly, it could invalidate any subsequent policy implications.

There are two types of persistence revealed by Heckman (1981a) in labor market. The

first type of persistence is due to observed heterogeneity such as level of education,

age, marital status, health problems etc. and unobserved heterogeneity such as

self-drive, social capital etc. These observed heterogeneity and unobserved

heterogeneity may induce recurring unemployment across periods. If left

unaccounted for, the heterogeneities induce false state dependence in labor market

histories. In the second type of persistence, previous unemployment period may itself

have an effect on the chance of current employment. The second type of persistence is

called the true state dependence.

Contoyannis et al. (2004), Ayllon and Blanco (2012) and Yong-Woo (2016) used

DPOP model to study the dynamic self-assessed health in Britain, Spain and Korea

respectively. As indicated by Ayllon and Blanco (2012), the effects of observed

heterogeneity on self-assessed health are generally overrated since they detect the

impact that should be associated with past health or other unseen heterogeneities

absent in majority of datasets. Their results indicated that state dependence and

unobserved heterogeneities accounted for much of the chances of observing a specific

health status while the importance of observed heterogeneities diminishes when

controlling the state dependence and unobserved heterogeneities. The unobserved

heterogeneity accounts for 30%-40% of reporting a specific health status. Heckman

(1981b) pointed out that poor handling of unobserved heterogeneities produces a

conditional association between previous and current experiences, which is referred to

as false state dependence. The separation of true and false state dependence is vital in

policy-making.

Heckman (1981b) and Wooldridge (2005) proposed two ways of treating the initial

conditions problem. Heckman (1981b) used reduced-form equation that rely on
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available pre-sample information as an approximation method for the conditional

distribution of the first observation. The drawback of this approach was high

computational cost in the estimation process as approximation of the conditional

probability of initial values leads to a simultaneous estimation problem of the

reduced-form and structural model. Wooldridge (2005) approach was based on

unobserved individual-effects conditional on the initial values and time variant

variables. As the number of time variant variables and/or T grows, the model will

possess a huge number of variables that will decrease the degrees of freedom and

make it difficult to evaluate the integrals. This will intensify evaluation time

significantly, even for relatively moderate panels. This approach results into a

tractable functional form and consistent estimator. The two approaches produces

consistent estimates of the parameters of the model under the assumption of correct

specification of the distribution of the errors. However, according to Raymond et al.

(2007), the Wooldridge (2005) approach is easier to apply and more flexible in the

sense that it handle a vast range of nonlinear dynamic panel data models and permits,

unlike the Heckman approach, for individual effects to be associated with the strictly

exogenous covariates. The likelihood function for dynamic and the static versions

within Wooldridge approach have a similar structure in nonlinear model.

Akay (2009) proposed a constrained model where the exogenous variables in the

Wooldridge (2005) methods are replaced by the within-means based on all periods

including the first, and thus reduces the number of included variables. Wooldridge

(2005) indicated that consistency requires correct specification of the conditional

distribution of the unobserved effect given initial observation and exogenous

variables. Rabe-Hesketh and Skrondal (2013) revealed that the constrained model

proposed by Akay (2009) could be severely biased because it absolutely fixes the

coefficients of the initial covariates equal to the coefficients for the subsequent

periods, which is at odds with the form of the correct distribution. The main motive is

that the conditional distribution of the unobserved effect, given the covariates at all

periods (including the initial period), relies more directly on the initial-period
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covariates than on the covariates at the other periods — in some cases it relies only on

the initial-period covariates and the initial dependent variable. The coefficients of the

initial-period covariates should therefore not be constrained to be equal the

coefficients at the other periods. They showed that the bias for the constrained model

practically vanishes when the initial period covariates are included as additional

covariate or by using Wooldridge’s original auxiliary model.

Gurmu and Dagne (2009) and Harris and Zhao (2007) ZIOPC models ignored the

unobserved heterogeneity and true state dependence that account for much of the

chances of observing a specific consumption level of cigarettes. Harris and Zhao

(2007) analysed smoking data using ZIOPC models from Australian National Drug

Strategy Household Survey. The study used surveys of 1995, 1998 and 2001.

Although the smoking data was panel, Harris and Zhao (2007) ignored state

dependence, unobserved heterogeneity and initial condition problems and hence

overestimated the effects of the observed heterogeneity.

Christelis and Galdeano (2009) proposed a Semi-parametric zero inflated dynamic

panel ordered probit model with selectivity to analyse smoking persistence across

countries. They used Akay (2009) approach in modeling the relationship between the

initial observation and unobserved individual effect. They assumed that the individual

effect follows a K-point nonparametric distribution. Their cut points are known

because they are chosen to cater for bunching for cigarettes smoked The knowledge

of cut points was substantial. The OP model estimates the ratio between cut points

and standard deviation and the knowledge of cut points allowed them to identify the

standard deviation.

The constrained model proposed by Akay (2009) and used by Christelis and

Galdeano (2009) to modeling the initial condition was shown by Rabe-Hesketh and

Skrondal (2013) to be severely biased because it absolutely fixes the coefficients of

the initial explanatory variables to be equal to the coefficients for the subsequent

periods, which is at odds with the form of the correct distribution. This indicate that

the Semi-parametric Zero inflated dynamic panel ordered probit model with
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selectivity proposed by Christelis and Galdeano (2009) was severely biased. The

model assumes presence of heaping and hence the cut points can be deduced to

handle the heaping. This model cannot be used when the cut points are unknown. The

non-parametric distribution of the individual effects does not include the association

between the unobserved individual effects and their variances. If the correlation is

significant between the unobserved individual effects, then the unobserved individual

effects factors affecting participation decision have an effect on an unobserved

individual effects factors affecting consumption as well. Disregarding this association

can result to inconsistent estimates. The variances of the individual effects allow the

estimation of the inter-unit correlation coefficient that determine the percentage of

latent error variance associated with unobserved individual effects.

This study proposed parametric ZIDPOPC and ZIDPOPI models with unknown cut

points that examined how state dependence, unobserved heterogeneity, observed

heterogeneity, initial condition using Rabe-Hesketh and Skrondal (2013) approach

and zero inflation jointly affect overall evolution of time series and applied them to

model cigarettes consumption among youths. The cut points in ZIDPOPC and

ZIDPOPI models represents the position on the latent scale where a respondent shifts

from one category to another.

1.2 Statement of the Problem.

The Semi-parametric Zero inflated dynamic panel probit model with selectivity was

based on a constrained approach for initial conditions that lead to biased estimates

because it absolutely fixes the coefficients of the initial covariates equal to the

coefficients for the subsequent periods, which is at odds with the form of the correct

distribution, non-parametric distribution for unobserved individual effects and known

cut points. The model cannot be applied in data with unknown cut points. The model

ignored the correlation between the time invariant heterogeneity terms in the

participation and consumption equations and therefore assumed that they were

uncorrelated. This assumption is not trivial. For example, if this correlation is

significant, then it implies that factors affecting participation have an effect on
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cigarette consumption as well. Ignoring this effect can lead to inconsistent estimates

and overestimation of the estimated standard deviations of the individual effects. The

model ignored the variances of unobserved heterogeneities that are used to determine

the latent error variance associated with individual effects. The model used simulated

maximum likelihood approach where the individual’s effects are integrated out by

computing the double integral by simulation. This procedure could be very

time-consuming even with fast modern computer and imprecise even with the use of

modern simulator like GHK or Halton simulators. Simulated maximum likelihood

require computation of a large number of cumulative density function in order to

obtain sufficient precision in the log-likelihood function. The simulated probabilities

are different each time it is resimulated with a new set of random draws producing a

simulation noise. This simulation noise decline, for a given sample size, as the

number of draws increases, becoming trivial if the number of draws is large enough.

This study proposed Zero inflated dynamic panel ordered probit model with

independent and correlated parametric errors terms that incorporates the state

dependence, unobserved heterogeneities based on parametric distribution with

selectivity, unconstrained initial conditions and unknown cut points. This thesis used

an alternative approach based on a two-step Gauss-Hermite Quadrature to evaluate

the two integrals and is five times faster than the simulated maximum likelihood. The

two-step Gauss-Hermite Quadrature relies on a decomposition of the

two-dimensional normal distribution for the individual effects into a one-dimensional

marginal distribution and a one-dimensional conditional distribution. The two-step

Gauss-Hermite Quadrature have satisfactory performance in finite sample for even a

small number of nodes and weights. Due to intractability of the model, parameters

were estimated by maximum likelihood estimation based on Newton Raphson

algorithm. However, the classical approach involve huge computation cost, sometime

numerical convergence might fail and does not allow incorporation of prior

information. Bayesian approach was proposed to address the computation and

convergence issues in classical approach since it allow sampling from the conditional
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distributions and does not require the computation of first and second order

derivatives and incorporate of prior information.

1.3 Objectives.

1.3.1 Main Objective

The aim of this research was to develop Zero inflated dynamic panel ordered probit

model with independent and correlated error terms, their estimation based on

maximum likelihood and Bayesian approaches and their applications in smoking data.

1.3.2 Specific Objectives

i To develop and investigate the properties of Zero inflated dynamic panel ordered

probit model with independent and correlated error terms.

ii To develop a maximum likelihood estimation for Zero inflated dynamic panel

ordered probit model with independent and correlated error terms.

iii To develop a Bayesian estimation technique for Zero inflated dynamic panel

ordered probit model with independent and correlated error terms.

iv To evaluate the performance of the Zero inflated dynamic panel ordered probit

model with independent and correlated error terms against the Dynamic panel

ordered probit model based on simulation study and on an empirical data.

1.4 Significance of the Study

The investigation used Rabe-Hesketh and Skrondal (2013) approach for initial

conditions that reduced the bias introduced in the study by a constrained model

proposed by Akay (2009). The study used a bivariate normal distribution that is

parametric for unobserved individual effects. The parametric distribution facilitate the

estimation of variances of unobserved heterogeneities that are used to determine the

percentage of latent error variance related to unobserved heterogeneities and the

correlation coefficient between the unobserved individual effects determine whether

issues influencing participation decision have an impact on consumption levels as

well. The study facilitate the estimation of the unknown cut points. The two integrals
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are evaluated using two-step Gauss-Hermite Quadrature that have satisfactory

performance in a finite sample for even a small number of nodes and weights and is

five times faster than the simulated maximum likelihood. The Gauss-Hermite

Quadrature sometime may result in high computational cost. The study has presented

a Bayesian approach that reduces the high computational cost by sampling from

conditional distributions. The study is significant to policy analyst in identifying the

socioeconomic and demographic factors associated with drug abuse and providing

invaluable information to facilitate well-targeted public health policies.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Classical Approach

Olsson (1979) and Muthen and Kaplan (1985) discussed the treatment of ordered

categorical data as continuous through analytical and simulation respectively. They

found that a small bias was introduced in the presence of at least five categories and

when the observations have a small symmetric distribution. A smaller bias was

introduced in the presence of at least seven categories. However, in the presence of at

most four categories or a skewed distribution, a downward bias was introduced in the

parameters and their standard errors. Such cases demand a special statistical method

for the ordinal data. A well-designed approach assume that the reported ordinal data

are linked to continuous latent variables. This was induced by use of cut points that

partition the continuous latent variable into serialized regions matching every ordinal

category.

Bliss (1934) first proposed the probit model for binary data. It changed the sigmoid

dose-response curve to a linear graph, which could later be analyzed by regression

estimation. The key attribute in probit models was the assumption of a latent variable

that determines the level of the observed response through thresholds. The utility of

the model is not affected when the existence of the latent variable does not seem

natural. The probit model has recently been used by Kitenge (2020) to investigate

household income patterns of COVID-19 infections. He found that the chance of

acquiring COVID-19 infection does not rely on whether an individual is rich or not.

Swinerton (2021) used the probit model to analysis how employment was affected by

COVID-19 infections. The study revealed that towards the end of 2020, the ability to

work from home or working for an essential business such as health reduced the

chances of unemployment.

Aitchison and Silvey (1957) proposed a probit model for ordinal data to test the

feedback of separate doses of stimulus that were categorized into ordinarily ranked
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group. The extension of probit model to accommodate multiple independent variables

was done by McKelvey and Zavoina (1975) and they also presented the original

detailed discussion of ordered feedback model. McCullagh (1980) utilized latent

variable model that regarded the ordered feedbacks as grouped data from an

underlying latent variable with the cut points for the groupings seen as unknown

coefficient.

Martin and Concepcion (2021) used OP model to explain the citizens’ satisfaction

during COVID-19 pandemic by attitude and a number of socio-demographic factors

within European Union countries. The study revealed that Danes, Irelanders, Greeks,

and Croats were the most satisfied citizens in comparison with Spaniards who were

the least satisfied nationals. The social class, political support to the government and

level of education were significant determinant of satisfaction levels. Furthermore,

most criticism came from respondents who were concerned by the state of economy

and protection of individual rights than respondents who were concerned by the state

of health. Das et al. (2021) used OP model based on telephone survey to investigate

students’ assessment for online class in the course of Covid-19 pandemic. The survey

revealed that sex, cost of online classes, internet network, living area, skills of the

tutors, academic grade and contemplation of online class as a better choice

significantly affected the students’ perception of online class.

Sometime, the count and ordinal data observations may contain excess zeros.

Zero-inflated or hurdle count data models are commonly used to analyse count data in

presence of excess zeros. Lambert (1992) developed Poisson Regression model with

excessive zeros and applied it in quality control to determine the defects in

Manufacturing. The zero inflation in count data can also be handled by hurdle count

model proposed by Cragg (1971) as an example of truncated models that permits

stochastic processes for various levels of participation.

In case of zero inflation in the ordered discrete choice models, Harris and Zhao (2007)

developed a ZIOP model that account for the source of excess zeros using the binary

probit distribution in a way identical to Lambert (1992) and Cragg (1971) approaches.
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Unlike Lambert (1992) and Cragg (1971) approaches that have the Poisson regression

framework, the ZIOP model comprises of a probit “splitting” model, which produced

the non-participants and participants, and an OP model, which produced

zero-consumption and non-zeros consumption participants. Furthermore, Harris and

Zhao (2007) also defined the ZIOPC model that permit the error terms of the binary

probit model and OP model to be correlated.

They demonstrated the merits of the ZIOPC model in isolating the diverse behavioral

schemes for non-smokers and smokers. Specifically they permitted the splitting of

zero users into non-smokers who choose not to smoke due to non-economic factors

such as morals and smokers with zero consumption that may be the result of a

demand-schedule corner solution and are therefore responsive to economic factors

such as income, prices etc. They demonstrated that the use of OP model would

confuse the effects of some key covariates that have contrasting results on the two

schemes. The model can also be used to determine the proportion of zeros coming

from each regime, and how this split shifts with observed characteristics. The

ZIOP(C) model permits for the recognition of covariates that are vital in each regime

for key policy analysis.

Several researches have been conducted using the ZIOPC model. They include

Downward et al. (2011) in modelling sports participation, Bagozzi et al. (2015) in

Modelling Two Types of Peace in international Conflict Research, Yuan et al. (2016)

in modeling mushroom consumption in the USA and Acero and Luis (2019)

modelling persistence in the imitation of innovations in products in the manufacturing

industry of Colombia. Greene et al. (2018) have integrated misreporting in ZIOP

model where the zero responses are permitted to originate from the nonparticipants,

participant misreports’ (who have larger loss functions associated with a truthful

response) and irregular clients and applied it to cannabis consumption. The study

revealed that the incidences of cannabis use was significantly affected by

misreporting. The study also revealed that the degree of misreporting was affected by

the administration of the survey, those in attendance when the survey was done and
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the respondent’s general trust in the surveys.

The OP model deals with cross sectional dataset and therefore cannot adequately

handle dynamic dataset that is collected over a period. In order to overcome this

inadequacy, Jackman (2000a, 2000b) developed a dynamic probit model for ordinal

data as an answer to a problem with quantitative research of international conflict and

In and out of war and peace with transitional models of international conflict using

binary probit model. He found that conditioning on the previous status was a key

guiding principle in the study of dynamic data. Beck et al. (2012) proposed another

model of dynamic binary model and applied it to “state failure,” which seizes severe

political crisis represented by such recent events as Afghanistan, Somalia and Bosnia.

This weakened the establishments in charge of governance to an extent that they no

longer exercise civil authority or uphold political order. They showed that overlooking

dynamism in ordinary probit model may results into misleading inferences. A model

that includes a lagged latent dependent variable and transition models provides

sensible results. They claimed that the utilization of a lagged latent variable is often

better than the use of a lagged realized dependent variable.

The AOP model has also been used to model rainfall data by Varin and Vidoni (2006)

and to model migraine severity by Varin and Czado (2010) using pairwise likelihood

function. Brooks et al. (2008) proposed an inflated OP model for monetary policy,

that is, a binary probit model that indicates the inclination of monetary policy to

change or not and an OP model showing the direction of change based on Taylor

(1993) type variables. They inflated OP model did not include autocorrelation that is

likely to be present between adjacent observations. They also accounted for

unobserved heterogeneity that exists between multiple responses. David and

Sirchenko (2018) developed a model for ordinal feedbacks to determine the policy

interest rate. The heterogeneity was captured with two-stage cross-nested model that

combined three ordered probit equations. The model permitted the existence of the

possible correlation amongst the three latent decisions. Monte Carlo simulations

demonstrated suitable outcome in small samples. The results based on panel data on
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individual policymakers’ votes for the interest rate showed superiority with respect to

the conventional two-part OP model.

Christelis and Galdeano (2009) proposed a Semi-parametric ZIDPOP model that was

an extension of ZIOPC model by Harris and Zhao (2007) within a semi-parametric

dynamic framework. It permitted the time-varying error terms between participation

decision and various consumption levels to be correlated. They accounted for

unobserved heterogeneities in a semi-parametric approach for the sake of

differentiating genuine state dependence from non-genuine state dependence. The

model demonstrated that the presence of unobserved individual heterogeneity results

into a huge reduction in the size of the genuine state dependence.

Contoyannis et al. (2004), Ayllon and Blanco (2012) and Yong-Woo (2016) used

DPOP model to study the dynamic self-assessed health in Britain, Spain and Korea

respectively. They found that unobserved heterogeneity and state dependence explain

much of the chances of registering a particular health status while the importance of

observed heterogeneity diminishes when managing both. Overlooking the state

dependence overestimate the effect of observed heterogeneity while ignoring

unobserved heterogeneity will overestimate the state dependence. According to

Heckman (1981a), the poor treatment of unobserved individual effects gives rise to a

conditional association between previous and current experiences, which is referred to

as false state dependence. To differentiate the true state dependence from the false

state dependence is of great concern to policy-making. The presence of state

dependent variable as covariates and absence of the first observation in the panel data

results in the initial conditions problem. This refers to the challenge of correctly

specifying our observed first period distribution when data is not observed from time

0. This results in biased estimation in short dynamic panels. Heckman (1981b) and

Wooldridge (2005) approaches are the commonly used methods of dealing with the

initial condition problem. Heckman (1981b) approach specifies a model for the initial

conditions given the individual effects and the strictly exogenous covariates. The

model is often taken to be similar to the model underlying the remaining process. This
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results into huge computational cost. Wooldridge (2005) proposed to model the

distribution of the unobserved heterogeneity conditional on the first reported state and

time-varying covariates at each period. As the number of time variant variables and/or

T grows, the model will contain a huge number of variables that will lower the

degrees of freedom, make it difficult to evaluate the ensuing integrals and escalate

estimation time for even a moderate panel.

Akay (2009) proposed a constrained model where the exogenous variables in the

Wooldridge’s methods are replaced by the within-means based on all periods

including the first, and thus reduces the number of included variables. Wooldridge

(2005) revealed that consistency demands correct specification of the conditional

distribution of the unobserved heterogeneity given first observation and exogenous

variables. Akay (2009) found that Wooldridge (2005) approach for initial condition

problem perform well for the panels with at least 5 periods while Heckman’s

reduced-form approximation perform well for the panels with less than 5 periods.

This is because the Wooldridge method does not specify an explicit conditional

probability distribution for the first values, and the bias obtained with this method is

behaviourally the same as the exogenous first values assumption for very short panels.

He showed that all the approaches works equally well for panels with at least 10

periods.

Rabe-Hesketh and Skrondal (2013) revealed that the constrained model proposed by

Akay (2009) could be severely biased because it absolutely fixed the coefficients of the

first covariate equal to the coefficients for the succeeding periods, which is at odds with

the form of the correct distribution. The rationale is that the conditional distribution of

the unobserved heterogeneity, given the covariates at all periods (including the first

period), relies more directly on the first-period covariates than on the covariates at the

other periods — in some cases it relies only on the first-period covariates and the initial

dependent variable. The coefficients of the first-period covariates should therefore not

be constrained to equal the coefficients at the other periods. They showed that the bias

for the constrained model practically vanishes when the initial period covariates are
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added as additional covariates or by using Wooldridge’s original approach.

2.2 Bayesian Approach

Albert and Chib (1993) developed the Bayesian approach for the estimation of the OP

model by utilizing the MCMC method and Gibbs sampler while operating the data

augmentation method of Tanner and Wong (1987). They used the latent variable

representation for the estimation of OP model. The shortcoming of their data

augmentation was the high autocorrelation in the estimated cut points, that is, suffers

from slow mixing due to a high correlation between the simulated cut off points and

latent variables.

Cowles (1996) revealed that the sampling of the cut points conditioned on the latent

data could result to minor shifts in the cut points between successive iterations

particularly when more data become availed. The high autocorrelation could then also

affect the convergence of regression coefficients. Cowles (1996) proposed to solve the

problem by sampling the latent variable and the cut points jointly, that is, sampling

the cut points given the observed ordinal value and the other parameters, marginalized

over the latent variable and subsequently sampling the latent variable given the

remaining parameters including the cut points and data. Since the resulting

distribution of the cut points is not of standard form, he employed a sequence of

Metropolis Hasting steps to sample each cut point conditioned on the remaining

parameters, cut points and the data. Chib and Albert (2001) simplified the sampling of

the cut points by transforming them so as to get rid of the ordering constraint by

one-to-one mapping.

Butller (2011) proposed hierarchical probit models for binary and ordered ratings data

to assess instructor effectiveness based on Bayesian approach. In order to account for

the differences in instructor and course, they modified the latent variable structure by

including an instructor by course term as well as the student confounders. By

modifying the binary response to an ordered response, they were able to differentiate

poor, average, and exceptional instructors. These models provide more insight into

instructor effectiveness than the average scores alone and would be an effective tool
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for making recruitment and promotion decisions. Ohh (2015) also used the OP model

using Bayesian inference to compare the three diagnosing tool for prediction of

metabolic-related diseases. The study revealed that Waist-To-Height Ratio was

significantly better than Body Mass Index and Waist Circumference for prediction of

metabolic-related diseases in people aged above forty in Korea. Caglayan and Van

(2017) determined the variables influencing the economic development levels of

particular countries using Bayesian ordered probit model. They found that internet

users, share of expected years of schooling, gross domestic product, health

expenditure, seats in parliament had a positive effect, but life expectancy at birth and

rural population had a negative impact on human development in long term.

Gurmu and Dagne (2012, 2009) extended Harris and Zhao (2007) work to Bayesian

inference for univariate and Bivariate zero-inflated ordered probit and applied the

model in modelling tobacco consumption. They found a powerful proof that

accounting for zeros inflation presented a better fit to the data. They also found

evidence that the use of a model that ignores excess zeros hides differential effects

explanatory variables have on the two regimes, non-participant versus participant at

various level of consumption, including zeros.

Several researches have been conducted using the ZIOPC model based on Bayesian

inference. Oh et al. (2012) modelling Korean alcohol consumption. They found that

the marginal effect of each covariate shows that certain covariate have effects on the

genuine non-participant and potential participants in opposite directions, which may

not be discovered by an OP model. Several authors have extended the ZIOPC Model

to bivariate case based on Bayesian inference, these include Gurmu and Dagne (2012)

and Rajendra (2013) who proposed the zero-inflated bivariate ordinal data using latent

mixture approach that can be used in circumstances where two related feedback such

as marijuana and cocaine are gathered simultaneously.

The OP model based on Bayesian inference cannot adequately handle dynamic data

set that is collected over a period. In order to overcome this inadequacy, Muller and

Czado (2005) proposed an AOP model based on Bayesian approach using ordinal data
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to cater for the autocorrelation between adjacent observations. They applied the model

in analyses of high frequency financial data. Using the Bayes factor, they showed that

the AOP model provided a better fit than an ordinary OP model.

Hasegawa (2009) proposed the DPOP model based on Bayesian approach and applied

it to determining subjective well-being. His ordinal responses were from strongly

dissatisfied to strongly satisfied. The study revealed that savings and income had

positive effects while labor force participation and marriage had negative effects on

life satisfaction in terms of the response probabilities.

Park (2012) developed the Bayesian inference of time-series and ordered panel data

models with non-ignorable missing data and applied it in determining the

determinants of self-rated health based on the Health and Retirement data.

Stegmueller (2013) proposed Bayesian robust dynamic latent ordered probit model

for modeling dynamic preferences and applied it on individuals’ preferences for

government intervention over a period of nineteen years. His results demonstrated the

need of using a hierarchical dynamic panel modeling approach.

Seibert et al. (2018) developed the Cross-nested Autoregressive Ordered Probit

(CronAOP) model to model policy interest rates. They opted for a Bayesian approach

utilising MCMC methods and a Gibbs sampler with data augmentation, which made

the estimation to be computationally feasible and without high-dimensional

integration or numerical optimization. The simulations demonstrated that the

developed Cross-nested Autoregressive Ordered Probit (CronAOP) model works well

in small samples.

Maximum likelihood estimation of dynamic latent variable models require evaluation

of integrals that are intractable. Numerical approximations provide a possible answer

to this challenge. Lee and Oguzoglu (2007) and Kano (2008) proposed a simulated

maximum likelihood approach for multivariate probit model where the individual’s

effects are integrated out by computing the double integral by simulation. Mulkay

(2015) has shown that this procedure could be very time-consuming even with fast

modern computer. In this thesis, an alternative approach based on a two-step



24

Gauss-Hermite Quadrature was used in order to evaluate this double integrals. The

Gauss-Hermite quadrature was proposed by Butler and Moffitt (1982) to evaluate

multi-dimensional indefinite integrals. The Raymond et al. (2007) used two-step

Gaussian Hermite quadrature to implement maximum likelihood estimation of the

dynamic panel data Type 2 and 3 Tobit models. A Monte Carlo study showed that the

quadrature have satisfactory performance in finite sample for even a small number of

nodes and weights. According to Raymond et al. (2007), accounting for individual

heterogeneities but using exogenous initial conditions also leads to false state

dependence situation. The state dependence can only be estimated if we take into

account the association between the initial conditions and the individual effects.

Mullahy (1997) proposed the bivariate probit estimation for panel data using the same

approach and applied it to product and process innovations in France. A simulation

shows the importance of estimating the correlation in random effects and the

correlation between both equations.

The two-step Gauss-Hermite Quadrature algorithm results into high computational

cost. This cost of direct computing the multiple integrals can be reduced in a Bayesian

approach. Bayesian analysis is commonly used in many empirical studies due to some

advantages that it has over the classical methods. These includes; the use of prior

information that can generate more accurate results, it yields equivalent results to

maximum likelihood methods under non informative priors, it does not depend on

large sample theory and it can lower the computational cost in certain cases especially

the one involving multi-integrals.

Harris and Zhao (2007) dataset from the three most recent surveys of 1995, 1998 and

2001 had a time structure. The ZIOPC model proposed by Harris and Zhao (2007) only

accounted for observed heterogeneity but ignored the state dependence and observed

individual effects that account for much of the chance of observing a specific status.

This implied that they overestimated the effect of observed heterogeneity. They also

failed to consider initial condition that is likely to produce inconsistent estimates.

Christelis and Galdeano (2009) proposed Semi-parametric zero inflated dynamic
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panel probit model with selectivity and applied to study smoking persistence across

countries. They found a smaller true state dependence in participation decision and

consumption levels when unobserved individual heterogeneity was included and they

also uncovered huge disparities in true state dependence across countries. The fitting

was considerably improved by considering the bunching of the reported amount of

smoked cigarettes. The correlation between the participation and consumption levels

was significant, this implied that factors affecting participation decision had an effect

on consumption levels as well. Ignoring this association can results into inconsistent

estimates. They used Akay (2009) approach in modeling the relationship between the

initial observation and unobserved individual effect. They assumed that the individual

effect follows a K-point nonparametric distribution. Their cut points are known

because they are chosen to tackle bunching in the amount of smoked cigarettes. The

knowledge of the cut points has a significance practical implications. Given that the

ordered probit estimates the ratio between cut points and standard deviation, they

knowledge of cut points allowed them to identify standard deviation of the dynamic

panel ordered probit model.

Rabe-Hesketh and Skrondal (2013) revealed that the constrained approach could be

severely biased because it absolutely fixed the coefficients of the initial covariates

equal to the coefficients for the subsequent periods, which is at odds with the form of

the correct distribution. Christelis and Galdeano (2009) model assumed the cut point

are known and thus cannot be used in case where the cut points are unknown. They

non-parametric distribution of the unobserved individual heterogeneity ignored the

estimation of standard deviations and correlation of the individual effects. These

standard deviations allow the estimation of inter-unit correlation coefficients that is

used to determine the latent error variance credited to individual effects. If this

correlation between the individual effects is significant, then it indicates that factors

influencing participation have an effect on consumption levels as well. Ignoring the

correlation between the individual effects may lead to overestimation of the estimated

standard deviations of the individual effects and hence produce inconsistent estimates.
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The parameter were estimated by the simulated maximum likelihood estimation. This

method has been shown to be very time-consuming even with fast modern computer.

Simulated maximum likelihood require computation of a large number of cumulative

density function in order to obtain sufficient precision in the log-likelihood function.

The simulated probabilities are different each time it is resimulated with a new set of

random draws producing a simulation noise. This simulation noise decline, for a

given sample size, as the number of draws increases, becoming trivial if the number

of draws is large enough. The two-step Gauss-Hermite Quadrature relies on a

decomposition of the two-dimensional normal distribution for the individual effects

into a one-dimensional marginal distribution and a one-dimensional conditional

distribution. The application of Gauss-Hermite quadrature, as an alternative to

simulated maximum likelihood in this thesis, is inspired by the results of Guilkey and

Murphy (1993) that, for the identical accuracy, the Gauss-Hermite quadrature method

is 5 times as fast as the simulated maximum likelihood. The classical approach

involve huge computation cost and sometime numerical convergence might fail. It

does not allow incorporation of prior information in the estimation. Bayesian

approach was proposed to address the compuation and convergence issues in classical

approach since it allow incorporation of prior information and sampling from the

conditional distributions.

This study developed a Zero inflated dynamic panel ordered probit models with

unknown cut points that incorporate the state dependence, unobserved heterogeneities

that have parametric distributions and initial conditions based on Rabe-Hesketh and

Skrondal (2013). The parameters were estimated using maximum likelihood

estimation and Bayesian approach. This model was then used to identify the

determinants of smoking among the youths using the National Longitudinal Survey of

Youth 1997 (NLSY97).
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CHAPTER THREE

STATISTICAL PRINCIPALS FOR ANALYZING BINARY AND ORDERED

PROBIT MODELS

3.1 Introduction

The cross sectional and dynamic probit models and their estimation techniques such

as Maximum likelihood and a Bayesian approach based on Metropolis Hasting and

Gibb sampling are presented. The cross sectional studies involves collecting data from

a sample at an exact point in time while longitudinal involves repeatedly collecting

data from the same sample over an extended period of time.

3.2 Binary and Ordered Probit ModeIs

According to Xin-She (2020), Binary data occurs when the variable of interest yi

assumes merely two values, i.e. yi ∈ {0,1}, where i = 1,2, ...,n relate to items in the

sample such as persons, household, firms etc. In term of notations, yi = 1 typically

denotes the existence of the incident of concern, whereas the absence is denoted by

yi = 0.

Ordinal data occurs when the variable of interest yi can take one of the K ordered

values, i.e. yi = 1,2, ...,K. The unique characteristic of ordinal data is that even though

the responses are monotone, the scale on which they are evaluated is not considered to

be cardinal and variations between categories are not directly comparable. The ordinal

values should be mutually exclusive and exhaustive. The setup encompasses utility

maximizing decision makers, who choses among contesting choices related to certain

levels of utility. Specifically, respondent i has two levels of utility Ui1 and Ui0 that are

related to yi = 1. The utility maximizing agent then handpicks the preference granting

the higher of the two utilities:

yi =


1 if Ui1 >Ui0,

0 if otherwise.
(3.1)



28

The utility Ui j is familiar to the respondent but are unfamiliar to the analyst, who can

merely monitor a vector xi of characteristics of the respondent that can be associated

to utility through Ui j = xiβ j + εi j for j = 0,1. β j represents regression coefficient. xi

represents the covariates. The error term εi j captures the unobserved features that

influence utility but are not embraced in xi. This setup will be utilised to make

probabilistic statements concerning the reported alternatives yi conditionally on xi.

To develop a model for the reported selections, given the covariate xi and the

parameters β0 and β1, the conditional probability of observing yi = 1 can be specified

as an exceedance probability between the two utility levels.

P(yi = 1|xi,βo,β1) = P
(
x′iβ1 + εi1 > x′iβ0 + εi0

)
)

= P
(
εi0− εi1 < x′i (β1−β0)

)
(3.2)

It is actualized by expressing a density for the random variable εi0 − εi1. From

equation (3.2), we note that the selection probability relies solely on the differences in

utilities between choices, not on the absolute level of utilities. Specifically because the

probability in (3.2) relies on the difference β1−β0, it will remain constant if we include

an arbitrary constant d to both β0 and β1, i.e, x′i (β1−β0) = x′i ((β1 +d)− (β0 +d)). In

addition, the scale of utility is not recognized since the probability remains constant if

both sides of (3.2) are multiplied by an arbitrary constant d > 0, i.e,

P(εi0− εi1 < x′iβ1− x′iβ0) = P(d (εi0− εi1)< dx′i (β1−β0)). This challenge is dealt

with by securing the location and scale of the utility. The location is secured by

evaluating utility relative to that of the baseline category, Ui0. Specifically, we operate

with the differenced form zi = x′iβ + vi where zi = Ui1−Ui0, β = β1− β0 and vi =

εi1− εi0.

The association between the reported response yi and the latent variable zi is expressed

as

yi =


1 if zi > 0,

0 if otherwise.
(3.3)
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The scale is normalized by securing the dispersion measure of vi and assuming it as

available rather than an estimated value. This normalization does not constrain the

underlying flexibility of the model. The fixed variance of vi is model specific.

According to Xin-She (2020), a probit model is assumed if the error has a standard

normal distribution with probability density function and cumulative distribution

function given by φ (vi) = 1
2π

e−
v2
i
2 and Φ(vi) =

∫ vi
−∞

φ (t)dt respectively. The

probability density function φ (vi) is symmetric and the variance of vi is secured at

one as a normalization. Therefore,

P(yi = 1|β ) = P(zi > 0)

= P
(
x′iβ + vi > 0

)
= 1−P

(
vi <−x′iβ

)
= 1−

[
1−P

(
vi < x′iβ

)]
= P

(
vi < x′iβ

)
= Φ

(
x′iβ

)
(3.4)

Ordinal data models can be obtained by thresholding an underlying latent variable.

Specifically, we consider that a continuous latent random variable zi relies on a set of

vector of explanatory variables xi via the association zi = x′iβ + vi, but with the unique

characteristic that the reported response yi ∈ (1,2, ...,K) occur according to,

yi =k i f τk−1 < zi ≤ τk (3.5)

k denotes the ordinal variables. τ denotes cut points.−∞< τ0 < τ1 < ... < τK−1 < τK <

∞ are cut points that establish the categorization of the data into K ordered categories.

The chance of reporting yi = k , conditional on β and τ = (τ1, ...,τK−1) is given by

P(yi = k|β , τ) = Φ
(
τk− x′βi

)
- Φ
(
τk−1− x′βi

)
(3.6)

Similarly, we demand restrictions on location and scale in order to find the parameters.
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We restrict τ0 = −∞, τK = ∞ and assume τ1 = 0 to avoid the possibility of altering

the distribution without changing the chance of observing yi and dodge the handling of

boundary parameters. The scale is still fixed to 1 for normalization.

According to Xin-She (2020), Classical estimation is based on maximum likelihood

that demands maximization or minimization of the log-likelihood function and

Bayesian paradigm that is achieved by Markov Chain Monte Carlo (MCMC)

simulation methods such as Metropolis Hasting and Gibbs sampling.

Consider a set of responses y = (y1, ...,yn)
′ that originate from some statistical model

with sampling density f (y|θ) given by parameter vector θ . The density f (y|θ)

presents a mathematical description of the probabilistic phenomenon that creates the

response variable y given θ , it is called the data generating process. When f (y|θ) is

looked as a function of the parameter vector θ given the sample y, it is called the

likelihood function.

The value of θ that maximizes the log-likelihood function is referred to as maximum

likelihood estimator.

θ̂MLE = arg max
θ

log ( f (y|θ)) (3.7)

It is the value of θ that makes the observed sample y as “likely” as possible within

the limits of the proposed data generating process. Particularly, it is acknowledged that

under mild regularity conditions, the estimator θ̂MLE is consistent and asymptotically

normally distributed.

Consistency indicates that as n→ ∞, the probability limit of θ̂MLE is the true value

θ0 , i.e. .p lim θ̂MLE = θ0. Asymptotic normality means that in large samples, as n→

∞, where V is the Hessian matrix of the log-likelihood evaluated at θ0 and θ̂MLE ∼

N
(
θ0,V−1) the expectation is taken with respect to f (y|θ0). Since it is difficult to

evaluate this expectation, it is normal to approximate V by the observed Hessian matrix

V = −∂ 2In f (y|θ)
∂θ ′∂θ

which is evaluated at the maximum likelihood value θ = θ̂MLE . The

standard errors of the estimated parameters are obtained by finding the square root of

the diagonal entries of V−1. The standard errors are then used in creating the confidence
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intervals and test of hypothesis. For the binary data models, the likelihood function can

be written as,

f (y|β ) = P(y1,y2, ...,yn|β )

=
n

∏
i=1

f (yi|β )

=
n

∏
i:yi=1

Φ
(
x′iβ

) n

∏
i:yi=0

[
1−Φ

(
x′iβ

)]
=

n

∏
i=1

[
Φ
(
x′iβ

)]yi=1
n

∏
i=1

[
1−Φ

(
x′iβ

)]yi=0 (3.8)

where the second equation is obtained by assuming observations are independent

and the final equation is basically a convenient form for outlining the corresponding

probability.

The log-likelihood function is given by

log f (y|β ) =
n

∑
i=1

yilog(Φ
(
x′iβ )

)
+(1− yi) log

(
1−Φ

(
x′iβ

))
(3.9)

The maximization is carried out iteratively using standard hill climbing algorithms

such as Newton-Raphson because the first-order condition for maximization does not

admit an explicit analytical solution even though the log-likelihood is typically well

behaved (unimodal and concave) in this class of models. The score vector for the probit

model is given by,

∂ log f (y|β )
∂β

=
n

∑
i=1

yi
φ (x′iβ )
Φ(x′iβ )

− (1− yi)
φ (x′iβ )

1−Φ(x′iβ )
xi (3.10)

where φ is a probability density function and Φ is a cumulative distribution function.

The second derivative of probit model is given by,

∂ 2log f (y|β )
∂β∂β ′

=−
n

∑
i=1

φ
(
x′iβ

)[
yi

φ (x′iβ )+ x′iβΦ(x′iβ )

Φ(x′iβ )
2

+(1− yi)
φ (x′iβ )− x′iβ (1−Φ(x′iβ ))

(1−Φ(x′iβ ))
2

]
xix′i (3.11)
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The Newton-Raphson iteration is given by,

β̃n+1 = β̃n−
[

∂ 2l
∂β∂β ′

]−1

β=β̃

[
∂ l
∂β

]
β=β̃

(3.12)

β̃n is the nth round estimate and the Hessian and score vectors are evaluated at this

estimate. The stopping criteria is specified by
∣∣∣β̃n+1− β̃n

∣∣∣ < ε . From our Maximum

Likelihood theorem, we know that,

√
N
(

β̃ML−β

)
asy−→ N

(
0,

(
−E
(

∂ 2l
∂β∂β ′

)−1
))

(3.13)

For finite samples, the asymptotic distribution of β̃ML can be approximated by

N
(

β ,−
(
− ∂ 2l

∂β∂β ′

)−1

β=βML

)
.

The likelihood function for ordinal outcomes under the assumption of independent

sampling is given by,

f (y|β ,τ) = P(y1,y2, ...,yn|β ) =
n

∏
i=1

f (yi|β ,τ) (3.14)

=
n

∏
i=1

[
Φ
(
τk− x′iβ

)
−Φ

(
τk−1− x′iβ

)]yi=k (3.15)

To minimise the computational complexities related to constrained optimization, it is

helpful to reparametrize the problem in order to eliminate the constraints. This can be

done by transforming the cut points τ so as to eliminate the ordering constraint by

one-to-one mapping δk = log(τk− τk−1) and 2 ≤ k ≤ K−1 and then amending the

likelihood function to be a function of β and δ .

3.3 Zero Inflated Ordered Probit Model

The model was proposed by Harris and Zhao (2007). They incorporated excess zero

by considering a latent variable model (similar to a binary selection model):

s∗i = w′iγ +µi (3.16)



33

where s∗i denotes a latent variable, wi denotes p×1 vector of covariates and γ denotes

related vector of coefficients. The binary response is given by

si = I(si
∗ > 0) (3.17)

si denotes the observed binary variable. Where I(si
∗ > 0) = 1 if si

∗ > 0, and 0

otherwise. In scheme one, si = 1 or si
∗ > 0 for participants (e.g., smokers) while in

scheme zero, si = 0 or si
∗ ≤ 0 for non-participants. In case of the error term, si = 0

implies that µi ≤−wi
′γ . Let ỹ∗i and ỹi denotes the latent variable and observed ordinal

variable respectively. In setting of the zero-inflation model, the observed response yi

assumes the form

yi = siỹi (3.18)

We report yi = 0 when either the respondent is a non-participant (si = 0 ) or the

respondent is a zero consumer ( si = 1 and ỹi = 0 ). Likewise, we report positive

outcome (consumption) when the respondent is a positive consumer (si = 1 and ỹi >

0). Assume the error terms are independently distributed. The zero-inflated ordered

multinomial distribution, say P(yi), arises as a mixture of a degenerate distribution at

zero and the assumed distribution of the response variable ỹi as follows:

f1 (ỹ∗i , ỹi,si
∗,si|xi,wi,Ψ) =


P(si = 0)+P(si = 1)P(ỹi = 0) if k = 0,

P(si = 1)P(ỹi = k) if k = 1, 2, ..., K
(3.19)

The parameter space is given by Ψ = (β ,γ,α,Ω0). The likelihood function based on

N independent responses is given by

L(ỹ∗i , ỹi, s∗, s|x, w, Ψ) =
N

∏
i=1

K

∏
k=0

[P(si = 0)+P(si = 1, ỹi = 0)]dik

×
N

∏
i=1

K

∏
k>0

[P(si = 1, ỹi = k)]dik (3.20)
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dik is an indicator variable where dik = 1 if the respondent i picks outcome k and dik = 0

otherwise.

Separate alternatives of the description of the joint distribution of (εi, µi) produces

different zero inflated ordered response models. If the error terms are correlated, we

obtain ZIOPC and in case they are uncorrelated, we obtain independent ZIOP model.

3.4 Autoregressive Ordered Probit Model

AOP model was proposed by Muller and Czado (2005) and incorporated a lagged

latent dependence in OP model. Let us consider yt as an observed ordinal response

at t = 1, 2, ..., T where yt assumes only K distinct status, and a r + 1 dimensional

vectors xt = (1, xt1, xt2, ..., xir)
′ of independent variables for every period. Let yt

∗ be

an unobserved autoregressive dependent variable obtained from the observed ordinal

response yt by thresholding. It is represented by,

yt = k⇔ y∗t ∈ (τk−1, τk] k = 1, 2, ..., K (3.21)

y∗t = x′tϕ + φy∗t−1 + υ
∗
t t = 1, 2, ..., T (3.22)

where −∞ < τ0 < τ1 < ... < τk−1 < τk = ∞ are unknown cut points, ϕ =

(ϕ1, ϕ2, ..., ϕp)
T is a transposed column matrix of unknown regression coefficients

of the auto regression probit model and φ is the autocorrelation coefficient. We let

υ∗t ∼ N
(
0,δ 2) i.i.d.

3.5 Dynamic Panel Ordered Probit with Random Effects

The dynamic panel ordered probit model proposed by Hasegawa (2009) could be used

to model an ordinal dependent variable, e.g. yit = 1, 2, ..., K. Let y∗it ∈ (−∞, ∞) be

the underlying latent variable for an individual i at period t for i = 1, 2, ..., N. The

model is given by,

yit = k (3.23)
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if y∗
it
∈ (τk−1, τ k

]
where τk is a cut point and k is an ordinal observation. The latent

variable is considered to be established by the subsequent linear models

yit
∗ = φy∗it−1 + γ

′xit +κi + εit , t = 1, 2, 3, ..., T (3.24)

yi0
∗ = γ

′xi1 +κi + εi0, t = 0 (3.25)

where xi = (xi1, xi2, ..., xip) is the time-invariant and time-variant covariates, κi is an

unobserved heterogeneities. εit is a time and individual-specific error term which is

considered to be normally distributed and independent across respondents and times

and indepedent of κi. κi is considered to be normally distributed with a mean of zero

and constant variance, σ2 , and uncorrelated with εit for all t. εit is assumed to be

strictly exogenous, that is, εit are independent of εis for all t and s.

Conditioned on the unobserved heterogeneities κi, the response on yit , are considered

to be independent. Then, the contribution to the likelihood for respondent i, conditional

on the explanatory variables and the unobserved heterogeneities, would be the joint

probability.

p(yit = k|xit ,κi) =
N

∏
i=1

∏
t=0

K

∏
k=0

Φ
(
τk− γ

′
2xi1−κi

)
−Φ

(
τk−1− γ

′
2xi1−κi

)
N

∏
i=1

T

∏
t=1

K

∏
k=0

[
Φ
(
τk−φy∗it−1− γ

′
2xit−κi

)
−

Φ
(
τk−1−φy∗it−1− γ

′
2xit−κi

)]
(3.26)

where Φ(.) is the normal distribution function.

3.6 Gauss-Hermite Quadrature Approximation (GHQ)

The ZIOP model has an intractable likelihood function. Approximations such as

Gauss-Hermite quadrature need to be utilized to compute the multidimensioanl

integrals. Maximum likelihood estimation of dynamic latent variable models requires

evaluation of integrals that are intractable. Numerical approximations provides a fix to

this difficulty.
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The probabilists Hermite polynomials is given by,

HK (u) = (−1)K exp
{

u2

2

}
dK

duK exp
{

u2

2

}
(3.27)

with weights wk = 2K−1K!
√

π

K2[HK−1(uk)]
2 and nodes µk for k = 1, 2, ..., K are the roots of

probabilists Hermite polynomials.

The µk is the kth zero of the Kth order Hermite polynomial HK (µk). It is important

to note that the nodes are symmetrically distributed around zero. The approximation

is exact if f (u) is a polynomial of order 2K− 1 at the maximum. The tables for the

values of µk and wk are available in Abramovitz and Stegun (1964).

Gaussian quadrature is an influential tool for computing the intractable integrals and is

based on weights and nodes. Gauss-Hermite quadrature (GHQ) is used for numerical

approximation of integrals with Gaussian kernels. The integrand g(z) can be factored

as f (z)exp
(
−z2). Here exp

(
−z2) is called the weight function. When the Gaussian

density is not the factor of the integrand, a linear transformation can be made to convert

the Gaussian factor into the form exp
(
−z2).

Consider the following integral

∫
f (z)exp

(
−z2)dz (3.28)

GHQ approximates this integral as a finite weighted sum

∫
f (z)exp

(
−z2)dz≈

K

∑
k=1

wk f (µk) (3.29)

Classical GHQ approximation can be used when the weight function in the integrand

takes the form exp
(
−z2). When the weight function is a Gaussian density with mean

µ and variance σ2 , that is, ϕ
(
z; µ,σ2), a linear transformation to z will be used

to convert the weight function into the form exp
(
−z2) . This technique shifts the

location from zero to the mean of the weight function and changes the scale by

incorporating the dispersion parameter into the values of the new nodes. After applying
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this transformation the nodes become symmetric about the mean µ of the weight

function.

Let us assume that the weight function is a Gaussian density with µ and σ2. We define

the integrand as g(z) = f (z)ϕ
(
z; µ,σ2). Consider the integral of the form

∫
g(z)dz =

∫
f (z)ϕ

(
z; µ,σ2)dz (3.30)

or

∫
g(z)dz =

1√
2πσ2

∫
f (z)exp

{
−(z−µ)2

2σ2

}
dz (3.31)

By variable transformation u = z−µ

2σ2 , we get z = µ +
√

2σ2u.The above integral can be

rewritten and approximated as,

∫ 1√
π

f
(

µ +
√

2σ2u
)

exp
(
−u2)du≈

K

∑
k=1

1√
π

w∗k f (µ∗k ) (3.32)

Where µ∗k = µ +
√

2σ2uk are the shifted and scaled nodes and w∗k = wk
/√

π the

transformed weights. Locating the optimal number of nodes and weighs points can

be achieved numerically. To achieve this, one can begin with a few number of nodes

and weights points and raise them and note if it significantly affects the results, and

repeat this process until there is insignificant change. However, increasing number

of nodes and weights points also escalate the computing period. The accuracy of

the Gauss–Hermite approximation relies on the chosen number of nodes and weights

points. Ideally, number of nodes and weighs points is established by scrutinizing the

convergence behaviour of
K
∑

k=1

1√
π

wk f (zk) when the number of quadrature points is

increased.

3.7 Bayesian inference

Sometime, GHQ algorithm results in high computational cost. The cost of direct

computing the multidimensional integrals can be evaded by Bayesian approach.

Bayesian approach doesn’t need a large sample to ensure the adequacy of asymptotic
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approximations. The approach possess the finite sample properties and are consistent

and asymptotically efficient under mild conditions.

It relies on Bayes’ theorem given by,

f (ϑ |y) = f (y|ϑ)π (ϑ)∫
f (y|ϑ)π (ϑ)dϑ

∝ f (y|ϑ)π (ϑ) (3.33)

and inference depends on the posterior density f (ϑ |y) that is proportional to the

product of the likelihood function and prior density .
∫

f (y|ϑ)π (ϑ)dϑ is referred

to as the normalizing constant and is free of ϑ , only a function of data.

Prior distribution indicates our thought about the ambiguity in ϑ before we collect

any data while the posterior distribution indicates the ambiguity in ϑ after we collect

the dataset y. The Prior distribution may be informative, diffused or completely non-

informative. The non-informative is popular as it allow the data to dictate the analysis.

Once we obtain the posterior distribution of ϑ , we can investigate its properties like

measure of central tendencies such as posterior mean and measure of variability such

as variance by analyzing the function f (ϑ |y). In many situations, notably when ϑ is a

vector of parameters, it complex to isolate the properties of ϑ due to hurdles in solving

the problem numerically. One of the possibility is to pursue MCMC algorithm outlined

below.

3.8 Monte Carlo Methods

It represents a simulation-based approximation to compute intractable integrals. Its

foundation originate from the law of large numbers that states as follows; If X is a

random variable with E (X)< ∞ and x1, x2, ..., xh are i.i.d draws from the distribution

of X , then as h→ ∞

1
h

h

∑
i=1

xi→ E (X) with probability 1 (3.34)

Hence, if we require to evaluate any integral of the form
∫

f (y|ϑ)π (ϑ)dϑ for a

recognizable integrable function, we can in turn simulate a huge number of ( i.i.d.)

observations ϑ1, ϑ2, ..., ϑh from posterior density of ϑ , compute the function π at
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those h points and approximate this integral with 1
h

h
∑

i=1
π (ϑi). The methods rely on the

ability to create a huge number of observations from the target posterior of ϑ . One

can also draw from the joint posterior by applying conditional and marginal draws in

succession.

A sequence of a random variable
{

x(0), x(1), x(2), ...
}

is a Markov Chain if the

conditional distribution of x(n), given x(0), x(1), x(2), ..., x(n−1) merely relies on x(n−1).

If x(0) ∼ f0

(
x(0)
)

, then

f1

(
x(1)
)
=
∫

q
(

x(1)|x(0)
)

f0

(
x(0)
)

dx(0) (3.35)

Here q
(

x(1)|x(0)
)

is called transition kernel of the Markov chain. In general,

ft
(

x(t)
)
=
∫

q
(

x(t)|x(t−1)
)

ft−1

(
x(t−1)

)
dx(t−1) (3.36)

If ps (x) is a probability density function such that xt ∼ ps⇒ xt+1 ∼ ps then ps (x) is

the stationary distribution for the Chain. Obviously, the form of ps (if it occur) relies

on the form of q. If we simulate x(0) ∼ ps, all subsequent steps will yield correlated

samples from p.

We call a distribution pL (x) to be the limiting distribution of a Markov chain if,

pL (x) = lim
t→∞

p
(

X (t) ∈ A|X (0) = x(0)
)

(3.37)

does not relies on the first state x(0) . Limiting distribution does not always exists. We

label the chain as irreducible, if there is a route to move from every state to every other

state. We label the chain as aperiodic if for any two states a and b, the gcd of all path

lengths that go from a to b is 1. We label the chain as positive recurrent, if beginning

from any state, the average time to resume to that state is finite.

For a positive recurrent, irreducible and aperiodic chain, that is ergodic Markov chain,

there exists a limiting distribution that is also its distinct stationary distribution. This
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indicates that if we can discover an ergodic Markov chain with stationary distribution

f (ϑ |y), the marginal distribution of draws from that ergodic chain will converge to a

limiting distribution distribution that is identical to the stationary distribution f (ϑ |y),

regardless of the distribution of the first parameter vector ϑ (0). The sampling scheme

is called MCMC algorithm.

Suppose q
(

ϑ (t+1)|ϑ (t)
)

be a transition kernel with stationary distribution f (ϑ |y). If

we draw ϑ (0) from preferred distribution and keep drawing ϑ (1),ϑ (2) as:

ϑ
(0) q

(
ϑ
(1)|ϑ (0)

)
ϑ
(1) q

(
ϑ
(2)|ϑ (1)

)
ϑ
(2)→ ... (3.38)

then, after a huge number of draws N are completed, ϑ (N+1), ϑ (N+2), ... can be

approximated as correlated samples from f (ϑ |y). Thus, we need to dispense with

number of initial draws, called burn-in period in an MCMC. The initial phase of the

algorithm may be biased by the first values, and are therefore usually abandoned before

further analysis.

Often, there is autocorrelation among the draws in each parameter sequence, while

high correlation among draws in each parameter sequence makes the convergence of

the sequence slow, some authors such as Plummer et al. (2005) and Zuur et al. (2002)

recommended using thinning to reduce autocorrelation. This is done by only picking

draws of the chain at a particular point d such as ϑ (N+1), ϑ (N+d+1), ϑ (N+2d+1), ... A

larger value of d produces a weaker correlation between the sequential observations.

An MCMC algorithm normally utilizes the burn-in and thinning so that the remaining

samples estimate as much as possible a set of independent draws from f (ϑ |y).

3.9 Gibbs sampling

Gibbs sampling is an MCMC method for simulation from a distribution when its full

conditional densities have recognizable form. Gelfand and Smith (1990) reviewed

Gibbs sampling and revealed its great potential in computing Bayesian posterior

densities for a diverse structured models. Assume that there are k parameter blocks

ϑ1, ϑ2, ..., ϑk with joint density π (ϑ1,ϑ2, ...,ϑk|y). We set the initial values for
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the parameter as ϑ o
1 , ϑ o

2 , ..., ϑ o
k . Good starting values can be maximum likelihood

estimates. At the hth iteration, each element of ϑ h
i , i = 1,2, ...,k is revised by sampling

from the complete conditional distributions:

ϑ
(h)
1 ∼ π

(
ϑ1|ϑ

(h−1)
2 ,ϑ

(h−1)
3 , ...,ϑ

(h−1)
k ,y

)
ϑ
(h)
2 ∼ π

(
ϑ2|ϑ

(h−1)
1 ,ϑ

(h−1)
3 , ...,ϑ

(h−1)
k ,y

)
ϑ
(h)
k ∼ π

(
ϑk|ϑ

(h−1)
1 ,ϑ

(h−1)
2 , ...,ϑ

(h−1)
k−1 ,y

)
) (3.39)

If we administer a huge number of iterations, the joint distribution of ϑ
(h)
i =(

ϑ
(h)
1 ,ϑ

(h)
2 , ...,ϑ

(h)
k

)
approaches the posterior distribution. Under mild conditions,

it can be shown that the Markov chain formed by the Gibbs sampler has a limiting

invariant distribution that is the distribution of interest π (ϑ1,ϑ2, ...,ϑk|y). This implies

that draws acquired by Gibbs sampling after the initial burn-in period, can be assumed

as originating from π (ϑ1,ϑ2, ...,ϑk|y). We can run the algorithm as long as needed to

reach the level of precision we want. The full conditionals are easy to sample from

if the model is conjugate. However, the algorithm has some limitations. Sometime,

it is impossible or impractical to obtain the conditional distributions for each of the

random variables in the model or it may be that the conditional distributions are of

unrecognizable form, and therefore there is no clear means to obtain samples from

them. There are also situation in which Gibbs sampling will be very inefficient. For

instance, the mixing of the Gibbs sampling chain might be very slow, implying that

the algorithm may consume a long period of time exploring a local region with high

density, and thus take very long to explore all regions with significant probability mass.

3.10 Metropolis-Hastings Algorithm

The algorithm was developed by Metropolis and Ulam (1949) and Hastings (1970)

can be used when the Gibbs sampler fails, either because of poor convergence or the

inability to sample from a known full conditional distributions. We locate a transition

kernel q with stationary distribution same as f (ϑ |y) using the algorithm. Consider

a case where a closed form expression is available for f (ϑ |y). We are unable to
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sample from it but, given a point, we can compute it up to a normalizing constant. The

Metropolis-Hastings (MH) algorithm perform well in this case by proposing successive

values of ϑ from a proposal distribution g that is completely recognizable and easy to

draw from.

Given ϑ (t), we can draw ϑ (propose) from g
(

ϑ (propose)|ϑ (t)
)

. So, the recent state of ϑ

acts as a parameter in g. Then, we compute an acceptance probability αA provided by

αA

(
ϑ
(propose)|ϑ (t)

)
= min

1,
f
(

ϑ (propose)|y
)

f
(
ϑ (t)|y

) g
(

ϑ (t)|ϑ (propose)
)

g
(
ϑ (propose)|ϑ (t)

)
 (3.40)

Finally, we set the next state of ϑ as:

ϑ
(t+1) =


ϑ (propose) with probability αA,

ϑ (t) with probability 1 - αA,

(3.41)

The main feature of the algorithm is to guarantee a favorable rate of acceptance for

the proposals. A useful proposal distribution will provide a value of αA close to 1(so

we accept what we propose most of the time). If a proposal distribution provides small

values of αA close to 0 most of the time, the Markov chain of αA often gets stuck

at present states and covers only a few states in a long time. In usages, it may be

challenging to pick a proposal distribution with favorable rate of acceptance majority

of the times.

There are two types of proposal distributions; namely symmetric and asymmetric

proposal distributions in the literature. Symmetric proposal distribution exist when

q
(

ϑ (t)|ϑ (t−1)
)
= q

(
ϑ (t−1)|ϑ (t)

)
. Straightforward choices of symmetric proposals

include Gaussian distributions or Uniform distributions. For instance, if Gaussian

proposal is available, then ϑ (proposed) = ϑ (t) + N (0, σ). Because the probability

density function for N
(

ϑ (proposed)−ϑ (t), 0, σ

)
= N

(
ϑ (t)−ϑ (proposed), 0, σ

)
, this

is a symmetric proposal. A proposal distribution is a asymmetric distribution

if q
(

ϑ (t)|ϑ (t−1)
)
̸= q

(
ϑ (t−1)|ϑ (t)

)
. This includes Student t distribution, Inverse

Wishart distribution, log-normal distribution, distribution among others.
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3.11 Type of proposals used in Metropolis-Hastings Algorithm

Random walk proposal: It uses symmetric distribution as a proposal density.

Recommend a new state of ϑ from a distribution centered at its present state and a

proposal variance. The proposed state is not automatically admitted in the posterior

samples. They are admitted probabilistically based on the established probability αA.

This proposal distribution randomly upsets the present state of the chain, and then

either admits or fail to admit the perturbed value. The acceptance function in this

situation is given by

αA

(
ϑ
(propose)|ϑ (t)

)
= min

1,
f
(

ϑ (propose)|y
)

f
(
ϑ (t)|y

)
 (3.42)

Since g
(

ϑ (propose)|ϑ (t)
)
= g

(
ϑ (t)|ϑ (propose)

)
.

Independent proposal: It is recommended when the proposal distribution is

asymmetrical such as Chi-square distribution and this permit us to accommodate a

specific constraints in our models. These constraints include limiting the correlation

between -1 and 1, non-negative variance etc. In this case, the present state of ϑ is not

used to propose a new state. Hence, we denote g
(

ϑ (propose)|ϑ (t)
)
= g

(
ϑ (propose)

)
,

free of ϑ (t). The acceptance function in this situation is given by :

αA

(
ϑ
(propose)|ϑ (t)

)
= min

1,
f
(

ϑ (propose)|y
)

f
(
ϑ (t)|y

) g
(

ϑ (t)
)

g
(
ϑ (propose)

)
 (3.43)

The proposal is not connected to the present values of ϑ . Therefore, we can recommend

more scattered values across the domain.

3.12 Single Component Metropolis-Hastings

The Metropolis Hasting algorithm uses a single step to updates the whole parameter

vector. Therefore, a q-dimensional parameter vector demand a q-dimensional proposal

distributions. Nevertheless, at times it is easier to update each parameter individually,

in an algorithm referred to as single component Metropolis-Hastings (SCMH).
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Let ϑ (n) =
(

ϑ
(n)
1 ,ϑ

(n)
2 , . . . ,ϑ

(n)
p

)
be a p-dimensional vector denoting our relevant

parameters at iteration n. Define ϑ−1 = (ϑ1, ..., ϑi−1, ϑi+1, ..., ϑp) as the vector ϑ

with the ith parameter eliminated.

The algorithm updates each parameter in ϑ individually. What is required to update

the ith parameter of ϑ n is a proposal distribution q
(

y|ϑ (n)
i , ϑ

(n)
i−1

)
for proposing a

fresh value of ϑi given the present value of ϑi and all the other parameters.

Let X = (X1, X2, ..., Xp). There are p coordinate wise updates in the algorithm

represent each stage.

Let X−i =(X1, ..., Xi−1, Xi+1, ..., Xp) and Xn
−i =

(
Xn+1

1 , ..., Xn+1
i−1 , Xn+1

i+1 , ..., Xn
p
)

. i=

1, 2, ..., p. Xn
−i is the update at stage n, where first i− 1 coordinates are updated to

their values at step n+ 1 and the coordinates at positions i+ 1, i+ 2, ..., p remain at

step n . Define qi
(
Yi|Xn

i , Xn
−i
)

as the proposal distribution that creates proposals for ith

coordinate only. Then, the algorithm progresses as follows:

Create a candidate Yi ∼ qi
(
Yi|Xn

i , Xn
−i
)
.

Admit the candidate Yi with probability

α
(
Xn

i , Xn
−i, Yi

)
= min

(
1,

π
(
Yi|Xn

−i
)

qi
(
Xn

i |Yi, Xn
−i
)

π
(
Xi|Xn

−i
)

qi
(
Yi|Xi, Xn

−i
)) (3.44)

as Xn+1
i = Yi . Otherwise Xn+1

i = Xn
i . Proceed to the next coordinate.

Accept/Reject a proposal: Ultimately, we admit a newly proposed value with the

acceptance probability α , otherwise it not admitted. The min operator in the function

ensure the probability α does not exceed 1. Practically, we sample a random number

uniformly between 0 and 1, and if this random number is less than α , we admit the

newly proposed value; otherwise it is discarded.

However, we need to monitor the acceptance rates, that is, the times the algorithm

rejected the newly proposed values. When the variance of the proposed distribution

is small, the newly proposed values will be very close to the present state resulting

into a high α that raises the acceptance rate. This will produce small moves within the

domain and significantly raise the time it take to traverse the entire domain ϑ . This
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will leads to suboptimal exploration of the parameter space. When the variance of the

proposed distribution is large, the newly proposed values will be very far from the

current state resulting into a low α that lowers the acceptance rate. This will produce

large moves within the domain and significantly raise the time it take to traverse the

entire domain ϑ . This will leads to suboptimal exploration of the parameter space.

Consequently, we require to balance the moves within the domain in order to efficiently

traverse the whole domain of ϑ . The acceptance rates within 20% - 30% are optimal

for typical applications. We can either lower or raise the acceptance rates by increase or

decrease variances respectively. In Gibbs sampling, acceptance rates are always 100%

because all the newly proposed value are admitted. It is a unique case of Metropolis-

Hastings algorithm where proposal distributions are replaced by posterior conditional

distributions.

3.13 Metropolis Hasting within Gibb sampling

Hierarchical models are normally designed as products of conditional distributions

and therefore the Gibbs sampler is prevalent in Bayesian modelling. When it become

infeasible to apply Gibb sampling, we opt for Metropolis-Hastings algorithm instead-

this is referred to as Metropolis within Gibbs sampling.

The Probit model produces the following likelihood function,

L(β |yi) =
n

∏
i=1

[
Φ
(
x′iβ

)]yi=1
n

∏
i=1

[
1−Φ

(
x′iβ

)]yi=0 (3.45)

A multivariate normal distribution is normally chosen as a prior for β with mean vector

b and covariance matrix B, that is, β ∼ N(b,B). This posterior distribution is given by

L(β |yi) = π (β )
n

∏
i=1

[
Φ
(
x′iβ

)]yi=1
n

∏
i=1

[
1−Φ

(
x′iβ

)]yi=0 (3.46)

This is an incomplete conditional distribution and will be computationally complicated

due to unclosed form. The complete conditional distributions are the distribution of one

parameter in the model given all other parameters in the model and the data, y.

Similarly, the ordinal data model will also produce an incomplete conditional
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distribution that cannot be sampled directly. If the prior distribution is picked from

a recognizable distributions such as normal distribution, the data enroll into the

likelihood f (y|ϑ) in such a way that the posterior π (ϑ |y) have unknown distribution.

The Metropolis-Hastings algorithm is well adapted for sampling from such non-

standard distributions.
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CHAPTER FOUR

ZERO INFLATION DYNAMIC PANEL ORDERED PROBIT MODEL BASED

ON MAXIMUM LIKELIHOOD

4.1 Introduction

This chapter introduces a ZIDPOPI and ZIDPOPC models based on Rabe-Hesketh and

Skrondal (2013) approach for initial condition, parametric distribution for unobserved

individual effects, that is, bivariate normal distribution and assuming unknown cut

points.

4.2 Zero Inflation Dynamic Panel Ordered Probit Model

Let yb
it represent binary specification for either non-participation or participation for

respondent i at period t where i = 1, 2, ..., n and t = 0, 1, 2, ..., T . The respondents

are sampled independently from the main population. The time t = 0 represents the

first period.

The yb
it represent a binary variable showing the partition between non-participation (no

change, no symptoms), that is, yb
it = 0 and participation (or change, symptoms), that

is, yb
it = 1 at time t. yb

it is associated with latent variable yb∗
it through the mapping:

yb
it = 0 for yb∗

it ≤ 0 and yb
it = 1 for yb∗

it > 0 at time t. A univariate, continuous, latent and

autoregressive process yb∗
it is generated by the state dependence yb

it−1, time invariant

covariates wi, time variant covariates xit and error term ub
it in a linear relationship.

The latent variables yb∗
it and yb∗

i0 denotes the inclination for participation (change,

symptoms) and are given in vector form by,

yb∗
it = φ1yb

it−1 + γ
′
1xit +β

′
1wi +ub

it (4.1)

yb∗
i0 = γ

′
01xi0 +β

′
01wi +ub

i0 (4.2)

φ1, γ01 , γ1 , β01 and β1 are vectors of unknown coefficients. Where the response

variable yb∗
it is latent and yb∗

i0 denotes the first latent value of the process. ub
it = κ1i + eb

it

is the composite error term. xit and wi are vectors of time variant covariates and
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time invariant covariates respectively assumed to be strictly exogenous covariates.

Strictly exogenous implies that the covariates are independent from all previous,

present and the upcoming values of eb
it . eb

it is considered to be strictly exogenous,

that is, the xit are indepedent from eb
is for all t and s. The error terms of the

model are considered normally distributed, that is, eb
it ∼ iidN

(
0,σ2

eb

)
and σ2

eb = 1 for

identification purpose. κ1i is the time invariant individual-specific fixed effect (also

known as unobserved heterogeneity) affecting the decision to participation or not and

is uncorrelated with covariates and is also considered to be orthogonal (uncorrelated)

to exogenous variables following the standard random-effects assumption. The

association between two sequential error terms is given by corr
(
ub

it , ub
is
)
=

σ2
κ1i

σ2
κ1i+1

(t, k = 1, 2, ..., T ; t ̸= s). σ2
k1i

denotes the variance of unobserved fixed effect in

participation decision. To depict the state dependence, yb
it−1 is a vector of indicators

for the respondent’s status in the preceding wave and the model can be interpreted as a

first order Markov process. If φ1 ̸= 0, then the response yb
it−1 influences response in the

next period t. The asymptotic properties was with fixed time T and the cross-sectional

sample size, N, tending to infinity.

The probability of participation P(yb
it = 1) and P(yb

i0 = 1) were given by,

P(yb
it = 1|φ1yb

it−1, γ
′
1x′it , β

′
1wi, κ1i) = P

(
yb∗

it > 0
)
= Φ

(
φ1yb

it−1 + γ1
′xit +β

′
1wi +κ1i

)
(4.3)

P(yb
i0 = 1| γ ′01x′i0, β

′
01wi, κ1i) = P

(
yb∗

i0 > 0
)
= Φ

(
γ01
′xi0 +β

′
01wi +κ1i

)
(4.4)

and, by symmetry, for non-participation

P(yb
it = 0|φ1yb

it−1, γ
′
1xit , κ1i) = 1−Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +κ1i

)
(4.5)

P(yb
i0 = 0| γ ′01xi0, β

′
01wi, κ1i) = 1−Φ

(
γ
′
01xi0 +β

′
01wi +κ1i

)
(4.6)

where Φ(.) represents the cumulative normal distribution function.

Let yo
it denotes ordinal discrete response for respondent i at period t where i =

1, 2, ..., n and t = 0, 1, 2, ..., T . The respondents are sampled independently from
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the main population. The time t = 0 represents the first period. Conditional on yb
it = 1,

the consumption (change, severity of symptoms, nature of peace) levels are denoted by

a categorical variable yo
it (yo

it = 0, 1, 2, ..., K) at time t that is created by an OP model

through a second latent variable by means of thresholding. A univariate, continuous,

latent and autoregressive process yo∗
it is generated by its state dependence yo

it−1, zit and

uo
it in a linear relationship. It can also be expressed in vector form as,

yo∗
it = φ2yo

it−1 + γ
′
2zit +β

′
2vi +uo

it (4.7)

yo∗
i0 = γ

′
02zi0 +β

′
02vi +uo

i0 (4.8)

φ2 , γ02 , γ2 , β02 and β2 are vector of unknown coefficients. Where the response variable

yo∗
it is latent and yo∗

i0 denotes the first latent value of the process. uo
it = κ2i + eo

it is the

composite error term. zit and vi are vectors of time variant covariates and time invariant

covariates respectively assumed to be strictly exogenous variables. Strictly exogenous

implies that the covariates are independent from all previous, present and the upcoming

values of eo
it . eo

it is considered to be strictly exogenous, that is, the xit are uncorrelated

with eb
is for all t and s . The error terms of the model are assumed as eo

it ∼ iidN
(
0,σ2

eo
)

and σ2
eo = 1 for identification purpose. κ2i is the time invariant individual-specific fixed

effect (also known as unobserved heterogeneity) affecting the decision to participation

or not and is uncorrelated with covariates and is also considered to be orthogonal to

exogenous variables following the standard random-effects assumption. The inter class

association between two sequential error terms is given by corr (uo
it , uo

is ) =
σ2

κ2i
σ2

κ2i+1

(t, k = 1, 2, ..., T ; t ̸= s) . σ2
k2i

denotes the variance of unobserved fixed effect in

participation decision. To depict the state dependence, yo
it−1 is a vector of indicators

for the respondent’s status in the preceding wave and the model can be interpreted as

a first order Markov process. If φ2 ̸= 0, then the outcome yo
it−1 influences outcome in

the next period t. The asymptotic properties was with fixed T and the cross-sectional
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sample size, N, tending to infinity. The mapping between yo
it and yo∗

it is given by,

yo
it =



0 if yb∗
it ≤ 0,

0 if yb∗
it > 0 and yo∗

it ≤ 0,

k if yb∗
it > 0 and τk−1 < yo∗

it ≤ τk k = 1, 2, ..., K−1

K if yb∗
it > 0 and yo∗

it > τK−1

(4.9)

The latent variable yo∗
it and the observed variable yo

it are connected by

yo
it = k⇔ τk−1 < yo∗

it ≤ τk k = 0, 1, 2, ..., K (4.10)

where τk are cut points of ordinal response. To guarantee that the cumulative

distribution function for y0
it is well defined, we needed that τk−1 < τk ∀k . We specify

that−∞ < τ−1 < τ0 < τ1 < ... < τK−1 < τK < ∞ where, τ−1 =−∞, τK = ∞ and τ0 = 0

for identification purpose and to steer clear from handling of boundary parameters.

Considering that eo
it is Gaussian, the OP probabilities are given by

P(yo
it) =



P
(
yo

it = 0|φ2yo
it−1, γ ′2zit , β ′2vi, κ2i, yb

it = 1
)
=

Φ
(
−φ2yo

it−1−β ′2vi− γ ′2zit−κ2i
)

if k = 0,

P
(
yo

it = k|φ2yo
it−1, γ ′2zit , β ′2vi, κ2i, yb

it = 1
)
=

Φ
(
τk−φ2yo

it−1−β ′2vi− γ ′2zit−κ2i
)

−Φ
(
τk−1−φ2yo

it−1− γ ′2zit−β ′2vi−κ2i
)

if k = 1, 2, ..., K−1,

P
(
yo

it = K|φ2yo
it−1, γ ′2zit , β ′2vi, κ2i, yb

it = 1
)
=

Φ
(
φ2yo

it−1 + γ ′2zit +β ′2vi +κ2i− τK−1
)

if k = K

(4.11)
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While yb
it and yo

it are not independently reported in terms of the zeros, they are reported

through the criterion yit = yb
ity

o
it as proposed by Harris and Zhao (2007). To report

yit = 0 outcome we need either yb
it = 0 (the respondent is a nonparticipant) or jointly

that yo
it = 0 and yb

it = 1 (the respondent is a participant but with zero consumption). To

report a positive yb
it = 1 , we require jointly that the respondent is a participant yb

it = 1

and that yo
it > 0 (the respondent is a participant and with non-zero consumption).

Considering that eb
it and eo

it are Gaussian distributions, the full probabilities for yit is

given by

P(yit) =



P(yit = 0|x, z) = P(yb
it = 0|x)+P(yb

it = 1|x)P(yo
it = 0|x, z, yb

it = 1)

if k = 0,

P(yit = k|x, z) = P(yb
it = 1|x)P(yo

it = k|x, z, yb
it = 1)

if k = 1, 2, ..., K−1,

P(yit = K|x, z) = P(yb
it = 1|x)P(yo

it = K|x, z, yb
it = 1)

if k = K
(4.12)

Or
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P(yit) =



P(yit = 0|x, z) =
(
1−Φ

(
φ1yb

it−1 + γ ′1xit +β ′2wi +κ1i
))

+Φ
(
φ1yb

it−1 + γ ′1xit +β ′2wi +κ1i
)

Φ
(
−φ2yo

it−1− γ ′2z′it−β ′2vi−κ2i
)

if k = 0,

P(yit = k|x, z) = Φ
(
φ1yb

it−1 + γ ′1xit +β ′2wi +κ1i
)
∗

(Φ
(
τk−φ2yo

it−1− γ ′2z′it−β ′2vi−κ2i
)
−

Φ
(
τk−1−φ2yo

it−1− γ ′2z′it−β ′2vi−κ2i
)
) if k = 1, 2, ..., K−1

P(yit = K|x, z) = Φ
(
φ1yb

it−1 + γ ′1xit +β ′2wi +κ1i
)

Φ
(
φ2yo

it−1 + γ ′2z′it +β ′2vi +κ2i− τK−1
)

if k = K
(4.13)

In this way, the chances of a zero response has been “inflated” as it is a combination

of the chances of “zero consumption” from the OP model plus the chance of “non-

participation” from the binary probit model.

We can assume that eb
it and eo

it are correlated with a correlation coefficient equal to

ρebeo since they correspond to the same individual. Thus the probability of observing

yit becomes,

yit =


0 if

(
yb∗

it ≤ 0
)

or
(
yb∗

it > 0 and yo∗
it ≤ 0

)
,

k if
(
yb∗

it > 0 and τk−1 < yo∗
it ≤ τk

)
,k = 1, 2, ..., K−1

K if
(
yb∗

it > 0 and yo∗
it > τK−1

)
.

(4.14)
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that transform into the succeeding expressions for the probabilities:

P(yit) =



P(yit = 0|x, z) =
(
1−Φ

(
φ1yb

it−1 + γ ′1xit +β ′2wi +κ1i
))

+Φ
(
φ1yb

it−1 + γ ′1xit +β ′1wi +κ1i,

−φ2yo
it−1− γ ′2z′it−β ′2vi−κ2i,−ρebeo

)
if k = 0,

P(yit = k|x, z) =

Φ
(
φ1yb

it−1 + γ ′1xit +β ′1wi +κ1i,

− τk−φ2yo
it−1− γ ′2z′it−β ′2vi−κ2i,−ρebeo

)
Φ
(
φ1yb

it−1 + γ ′1xit +β ′1wi +κ1i,

τk−1−φ2yo
it−1− γ ′2z′it−β ′2vi−κ2i,−ρebeo

)
if k = 1, 2, ..., K−1,

P(yit = K|x, z) =

Φ
(
φ1yb

it−1 + γ ′1xit +β ′1wi +κ1i,

φ2yo
it−1 + γ ′2z′it +β ′2vi +κ2i− τK−1, ρebeo

)
if k = K

(4.15)

where Φ( f , g; ρ) represents the cumulative standardized bivariate normal distribution

function with correlation coefficient ρ between the two bivariate random variables.

This study assumes a balanced panel model where information about a respondent and

required variables are reported at each wave.

The presence of unobserved heterogeneities and the treatment of the first observations

are the challenges normally faced when dealing with dynamic panel data models. There

are two framework in dynamic panel data models namely random or fixed effects

framework. In the fixed effects framework κi is permitted to be associated with the

covariates. In the random effects framework κi is independent of the covariates.

In our dynamic models, we assume the random effects framework, where κi

is uncorrelated with the structural variables yi,t−1 and xit . The assumptions
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includes cov(yi,t−1, κi) = 0 and cov(xit , κi) = 0. A challenge faced in the

framework is the popular initial conditions problem. We are unable to compute

P
(
yb

i1, yo
i1|yb∗

i0 , yo∗
io , xi0, zi0

)
due to the absence of the preceding state on yb

i1 and yo
i1

(that is yb
i0 and yo

i0 ). Disregarding the initial conditions problem in the likelihood

function also leads to overlooking the data generation process for the initial observation

of the panel and treating them as exogenous or to be in equilibrium. This only happen

if the individual random effects are degenerative. Otherwise, the initial conditions

are explained by the individual random effects and disregarding them results into

inconsistent estimates.

Heckman (1981a) and Wooldridge (2005) proposed approaches for dealing with

the initial conditions problem. Heckman (1981a) suggested a model for the

initial condition given the unobserved heterogeneities and the strictly exogenous

covariates.This model considered to be identical to the model underlying the remaining

process. Wooldridge (2005) suggested a model for unobserved heterogeneities

conditional on the initial conditions and the strictly exogenous covariates. The two

approaches produces consistent estimates under the assumption of correct description

of the distribution of the errors.

Rabe-Hesketh and Skrondal (2013) specifies the individual time invariant error term,

κ1i and κ2i, as normally distributed terms and includes the initial observation yb∗
i0 and

yo∗
i0 , initial observation of the covariates xi0 and zi0 and the time averages of the time

varying covariates xi =
1
T

T
∑

t=1
xit and zi =

1
T

T
∑

t=1
zit such that:

κ1i = hb
1yb∗

i0 +hb
0 +hb

2xi +hb
3xi0 +δ1i (4.16)

κ2i = ho
1y0∗

i0 +ho
0 +ho

2zi +ho
3zi0 +δ2i (4.17)

The unobserved heterogeneities are considered, in every period, to be linear in the
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strictly exogenous covariates and the initial conditions. With

κ1i|
(

yb∗
io , xi

)
∼ N

(
hb

1yb∗
i0 +hb

0 +hb
2xi +hb

3xi0,σ
2
1

)
(4.18)

κ2i|(yo∗
i0 , zi)∼ N

(
ho

1yo∗
i0 +ho

0 +ho
2zi +ho

3zi0,σ
2
2
)

(4.19)

where δ1i|
(
yb∗

i0 , xi
)
∼ N

(
0, σ2

1
)

and δ2i|
(
yo∗

i0 , zi
)
∼ N

(
0, σ2

2
)
.

hb
0, hb

1, hb
2, hb

3, ho
0, ho

1 , ho
2 and ho

3 represents parameters to be estimated. δ1i and δ2i

are uncorrelated with
(
yb

io, xi
)

and
(
yo

i0, zi
)

respectively. The parameters hb
1 and ho

1

depict the dependence of the unobserved heterogeneities on the initial conditions.

Substituting (4.16) into (4.1) leads to a final underlying latent variable specification:

yb∗
it = φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

1yb
i0 +hb

0 +hb
2xi +hb

3xi0 +δ1i + eb
it (4.20)

with eb
it |
(
yb

it−1, xit , yb
i0, xi, xi0, wi, δ1i

)
∼ N (0,1)

Substituting (4.17) into (4.7) leads to a final underlying latent variable specification:

yo∗
it = φ2yo

it−1 + γ
′
2zit +β

′
2vi +ho

1y0
i0 +ho

0 +ho
2zi +ho

3zi0 +δ2i + eo
it (4.21)

with eo
it |
(
yo

it−1, zit , yo
i0, zi, zi0, vi, δ2i

)
∼ N (0,1)

The vectors
(
eb

it , eo
it
)

and (δ1i, δ2i) are considered uncorrelated with each other,

independently and identically distributed over time and across respondents assuming a

normal distribution with mean zero and covariance matrices below.

Σεbεo =

 σ2
eb ρebeoσebσeo

ρebeoσebσeo σ2
eo

 (4.22)

where σ2
eb = σ2

eo = 1 for identification purpose.

Σδ1iδ2i =

 σ2
1 ρδ1iδ2iσ1σ2

ρδ1iδ2iσ1σ2 σ2
2

 (4.23)

The entries of the matrices are also estimated.
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The dummies are removed from xi and zi to elude perfect collinearity. The estimates

of hb
1 and ho

1 indicate the association between the unobserved heterogeneities and first

observation.

The response probabilities of each value of yit are hence:

P(yit = k)=



P(yit = 0)

=
(
1−Φ

(
φ1yb

it−1 + γ ′1xit +β ′1wi +hb
0 +hb

1yb
i0 +hb

2xi +hb
3xi0 +δ1i

))
+Φ

(
φ1yb

it−1 + γ ′1xit +β ′1wi +hb
1yb∗

i0 +hb
0 +hb

2x̄i +hb
3xi0 +δ1i,

−φ2yo
it−1− γ ′2z′it−β ′2vi−ho

1y0∗
i0 +ho

0 +ho
2z̄i +ho

3zi0 +δ2i,−ρebeo
)

if k = 0,

P(yit = k|x, z) =[
Φ
(
φ1yb

it−1 + γ ′1xit +β ′1wi +hb
0 +hb

1yb
i0 +hb

2xii +hb
3xi0 +δ1i,

τk−φ2yo
it−1− γ ′2zit−β ′2vi−ho

0−ho
1y0

i0−ho
2zi−ho

3zi0δ2i,−ρebeo
)
−

Φ
(
φ1yb

it−1 + γ ′1xit +β ′1wi +hb
0 +hb

1yb
i0 +hb

2xi +ho
3zi0δ1i,

τk−1−φ2yo
it−1− γ ′2zit−β ′2vi−ho

0−ho
1y0

i0−ho
2zi−ho

3zi0δ2i,−ρebeo
)]

if k = 1, 2, ..., K−1,

P(yit = K|x, z) =[
Φ
(
φ1yb

it−1 + γ ′1xit +β ′1wi +hb
0 +hb

1yb
i0 +hb

2xi +hb
3xi0δ1i,

φ2yo
it−1 + γ ′2zit +β ′2vi +ho

0 +ho
1y0

i0 +ho
2zi +ho

3zi0δ2i− τK,ρebeo
)]

if k = K
(4.24)

Independence is an important assumption in the derivation of an ordinary probit model,

that is, the joint probability for the data equals the product of the marginal probabilities.

The log-likelihood function is the sum of the specific log-likelihood contributions.

However, this does not apply to serially dependent data since y∗it is a function of yit−1

and P(yit = k) is correlated with P(yit−r = k). Therefore, joint probability of the data

and log-likelihood are not the product of the time-specific probabilities and sum of the
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time-specific log-likelihood contributions respectively.

Wooldridge (2005) indicate that the assumption that yit =
(
yb

it , yo
it
)

relies on its once

lagged value yit−1 but not on any of its other lags implies that the joint distribution of

yi1, yi2, ..., yiT conditional on yi0, κi = (κ1i, κ2i) , (xit , zit) and (wi, vi) is denoted as

N

∏
i=1

T

∏
t=1

f (yit |yit−1, xit , zit ,wi, vi, κi) (4.25)

Conditioned on the unobserved heterogeneities κi = (κ1i, κ2i) , the response on yit are

considered to be uncorrelated.

The parameter to be estimated in this model will be denoted by

Θ =
(

φ1, φ2, γ1, γ2,β1, β2, ρebeo, ρδ1iδ2i, τ, hb
0, hb

1, hb
2, ho

0, ho
1, ho

2, σ1, σ2

)
(4.26)

The likelihood function of respondent i, beginning from t = 1 and conditional on the

covariates and the initial conditions, is denoted as,

Li =
∫ +∞

−∞

∫ +∞

−∞

T

∏
t=1

K

∏
k=0

Litk

(
yb

itk, yo
itk|y

b
i0k, yb

ikt−1,xit , x̄i, wi,

yo
i0k, yo

ikt−1, zit , z̄i, vi, δ1i, δ2i
)

g(δ1i,δ2i)dδ1idδ2i (4.27)

Where
T
∏

t=1

K
∏

k=0
Litk
(
yb

itk, yo
itk|y

b
i0k, yb

ikt−1, xi, wi, yo
i0k, yo

ikt−1, zi, vi, δ1i, δ2i
)

and

g(δ1i, δ2i) denote respectively the likelihood function of respondent i conditional on

the unobserved heterogeneities, and the bivariate normal density function of (δ1i, δ2i)

Assuming a normal distribution for these individual random effects with variances σ2
δ1

and σ2
δ2

respectively and a correlation coefficient ρδ1iδ2i , the density function for the

individual effects is given by:
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g
(
δ1i,δ2i|σ2

1 ,σ
2
2 ,ρδ1iδ2i

)
=

1

2π

√
σ2

1 σ2
2

(
1−ρ2

δ1iδ2i

) exp

 −1

2
(

1−ρ2
δ1iδ2i

) ∗
[(

δ1i

σ1

)2

−2ρδ1iδ2i

(
δ1i

σ1

)(
δ2i

σ2

)
+

(
δ2i

σ2

)2
]

(4.28)

This density function does not depend on observables but on the three parameters

which should be estimated.

The unconditional (to the individual random effects) joint density for the ith individual

is obtained by averaging over the distribution of these unobserved heterogeneities:

Li =
∫ +∞

−∞

∫ +∞

−∞

T

∏
t=1

K

∏
k=0

Ltk

(
yb

tk, yo
tk|y

b
i0k, yb

ikt−1, xit , x̄i, wi, yo
i0k,

yo
ikt−1,zit , z̄i, vi, δ1i, δ2i

) 1

2π

√
σ2

1 σ2
2

(
1−ρ2

δ1iδ2i

) exp

 −1

2
(

1−ρ2
δ1iδ2i

) [( δ1

σ1

)2

−2ρδ1iδ2i

(
δ1i

σ1

)(
δ2i

σ2

)
+

(
δ2i

σ2

)2
}

dδ1idδ2i

(4.29)

or

Li =
∫ +∞

−∞

∫ +∞

−∞

T

∏
t=1

K

∏
k=0

{
P
(

yit = k|yb
i0k, yb

ikt−1,y
o
i0k, yo

ikt−1,xit ,zit , xi, zi,wi,vi,Θ
)}ditk

1

2π

√
σ2

1 σ2
2

(
1−ρ2

δ1iδ2i

) exp

 −1

2
(

1−ρ2
δ1iδ2i

) [( δ1

σ1

)2

−2ρδ1iδ2i

(
δ1i

σ1

)(
δ2i

σ2

)

+

(
δ2i

σ2

)2
}

dδ1idδ2i (4.30)

Where ditk is an indicator such that ditk = 1 if ditk = k and 0 otherwise.
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4.3 Likelihood Approximation by Gauss–Hermite quadrature

Consider the binary and ordered probit models given by equations (4.20) and (4.21).

Suppose the vectors
(
eb

it , eo
it
)

and (δ1i, δ2i) are uncorrelated with each other and

independently and identically distributed over time and across respondents assuming a

bivariate normal distributions with mean zero and covariance matrix given by Σεbεo and

Σδ1iδ2i respectively. The likelihood function of respondent i, beginning from t = 1 and

conditional on the covariates and the initial conditions, is obtained by “integrating out”

the unobserved heterogeneities. The likelihood function of respondent i conditional

on the unobserved heterogeneities is given in equation (3.30) with σ2
1 and σ2

2 being

normalized to one. The bivariate normal distribution of δ1i and δ2i is given by equation

(4.28)

Hence, equation (4.30) can be written as,

Li =

+∞∫
−∞

exp

 −1

2
(

1−ρ2
δ1iδ2i

) δ 2
2i

σ2
2

 T

∏
t=1

K

∏
k=0

M (δ1i)dδ2i (4.31)

Where

M (δ1i) =
1

2π

√
σ2

1 σ2
2

(
1−ρ2

δ1iδ2i

)
|

+∞∫
−∞

exp

 −1

2
(

1−ρ2
δ1iδ2i

) δ 2
1i

σ2
1

exp

 1(
1−ρ2

δ1iδ2i

)ρδ1δ2

(
δ1i

σ1

)(
δ2i

σ2

)
T

∏
t=1

K

∏
k=0

{
P
(

yit = k|yb
i0k, yb

ikt−1,y
o
i0k, yo

ikt−1,xit ,zit , xi, zi,wi,vi,θ
)}ditk

dδ1i

(4.32)

Equation (4.32) can be approximated by “two-step” Gauss-Hermite quadrature that is

given by

∫ +∞

−∞

e−z2
f (z)dz≃

H

∑
h=1

wh f (ah) (4.33)

where ahand wh are nodes and weights respectively. The values of nodes and weights



60

are found in the table given in the mathematical textbooks by Abramovitz and Stegun

(1964) , and H is the actual number of nodes and weights. The accuracy depend on the

value of H. However, a large H raises the cost of computation significantly.

The procedure involves, in the first step, in approximating equation (4.32) using

equation (4.33). In the succeeding step, a second approximation is applied to equation

(4.32) where M (δ1i) is replaced by its first-step Gauss-Hermite approximation.

Let A and B denote by A = φ1yb∗
it−1+γ ′1xit +β ′1wi+hb

0+hb
1yb∗

i0 +hb
2xi and B = φ2yo∗

it−1+

γ ′2zit +β ′2vi +ho
0 +ho

1y0∗
i0 +ho

2zi respectively. Then equation (4.24) becomes,

P(yit = k) =



P(yit = 0) = (1−Φ(A+δ1i))

+Φ(A+δ1i, −B−δ2i, −ρebeo)

k = 0,

P(yit = k|x, z) =

Φ(A+δ1i, τk−B−δ2i, −ρebeo)

−Φ(A+δ1i, τk−1−Bi−δ2i, −ρebeo)

if k = 1, 2, ..., K−1,

P(yit = K|x, z) =

Φ(A+δ1i, B+δ2i− τK−1, ρebeo)

if k = K

(4.34)

Then,

M (δ1i) =
1

2π

√
σ2

1 σ2
2

(
1−ρ2

δ1iδ2i

)
+∞∫
−∞

exp

 −δ 2
1i

2σ2
1

(
1−ρ2

δ1iδ2i

)
exp

 1(
1−ρ2

δ1iδ2i

)ρδ1iδ2i

(
δ1i

σ1

)(
δ2i

σ2

)
K

∏
k=0

{
P
(

yit = k|y∗bi0k, y∗bikt−1,y
∗o
i0k, y∗oikt−1,xit ,zit , xi, zi,wi,vi,θ

)}ditk
dδ1i

(4.35)
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Consider the first change of variable z1i = δ1i

σ1

√
2
(

1−ρ2
δ1iδ2i

) and δ1i =

z1iσ1

√
2
(

1−ρ2
δ1δ2

)
. Differentiate z1i with respect to δ1i, we get,

dz1i
dδ1i

= 1

σ1

√
2
(

1−ρ2
δ1δ2

) or σ1

√
2
(

1−ρ2
δ1iδ2i

)
dz1i = dδ1i

Substituting it in equation (4.35) we get,

M (δ2i) =
1

2π

√
σ2

1 σ2
2

(
1−ρ2

δ1iδ2i

) +∞∫
−∞

exp{−z1i}2 exp


ρδ1iδ2i(

1−ρ2
δ1iδ2i

)
z1iσ1

√
2
(

1−ρ2
δ1iδ2i

)
σ1

(δ2i

σ2

)
√

2
(

1−ρ2
δ1iδ2i

)
σ1dz1i

K

∏
k=0

{
P
(

yit = k|y∗bi0k, y∗bikt−1,y
∗o
i0k, y∗oikt−1,xit ,zit , x̄i, zi,wi,vi,θ

)}ditk

(4.36)

Simplifying the above equation we get,

M (δ2i) =

√
2

2πσδ2

+∞∫
−∞

exp
{
−z2

1i
}

exp

 ρδ1iδ2i(
1−ρ2

δ1iδi

)z1i

√
2
(

1−ρ2
δ1iδ2i

)(
δ2i

σ2

)
K

∏
k=0

{(
1−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)))
+

+Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
,−B−δ2i,−ρebeo

)

Φ

(
A+ahσδ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−B−δ2i,−ρebeo

)

−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−1−B−δ2i,−ρebeo

)
[

Φ

(
A+ z1iσ1

√
2
(

1−ρ2
δ1iδ2i

)
, B+δ2i− τK−1, ρebeo

)]}ditk

dz1i

(4.37)
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and can be approximated using equation (4.33) by

M (δ2i) =

√
2

2πσ2

H

∑
h=1

wh exp

 ρδ1iδ2i(
1−ρ2

δ1iδ2i

)ah

√
2
(

1−ρ2
δ1iδ2i

)(
δ2i

σ2

)
K

∏
k=0

{(
1−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)))
+

+Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
,−B−δ2i,−ρebeo

)

Φ

(
A+ahσδ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−B−δ2i,−ρebeo

)

−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−1−B−δ2i,−ρebeo

)
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, B+δ2i− τK−1, ρebeo

)]}ditk

(4.38)

where ah and wh are the nodes and weights respectively. Consider the second change

of variable, z2i =
δ2i

σ2

√
2
(

1−ρ2
δ1iδ2i

) and δ2i = z2iσ2

√
2
(

1−ρ2
δ1iδ2i

)
Differentiate z2i with respect to δ2i, we get, dz2i

dδ2i
= 1

σ2

√
2
(

1−ρ2
δ1iδ2i

) and

σ2

√
2
(

1−ρ2
δ1iδ2i

)
dz2i = dδ2i

Replacing the derivative in equation (4.38), we get,

Li =

+∞∫
−∞

exp


 −δ2i

σ2

√
2
(

1−ρ2
δ1iδ2i

)


2


T

∏
t=1

M (δ1i)

(
σ2

√
2
(

1−ρ2
δ1iδ2i

))
dz2i

(4.39)

we get,

Li =

+∞∫
−∞

exp
{
−z2i

2} T

∏
t=1

M (δ1i)

(
σ2

√
2
(

1−ρ2
δ1iδ2i

))
dz2i (4.40)
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Substituting M (z1i), we get

Li =

+∞∫
−∞

exp
{
−z2i

2} √2
2πσ2

H

∑
h=1

wh exp


ρδ1iδ2i(

1−ρ2
δ1iδ2i

)ah

√
2
(

1−ρ2
δ1iδ2i

)z2iσ2

√
2
(

1−ρ2
δ1iδ2i

)
σ2


(

σ2

√
2
(

1−ρ2
δ1iδ2i

))
dz2i

T

∏
t=1

K

∏
k=0

{[(
1−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)))

+Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
,−B−δ2i,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−B−δ2i,−ρebeo

)
−

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−1−Bi−δ2i,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, B+δ2i− τK−1, ρebeo

)]}}ditk

(4.41)

Simplifying equation (4.41), we get

Li =

+∞∫
−∞

exp
{
−z2i

2} T

∏
t=1

π
−1
√(

1−ρ2
δ1iδ2i

) M

∑
h=1

wh exp
{

2ρδ1iδ2iz2iah
}

K

∏
k=0

{[(
1−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)))

+Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
,−B− z2iσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−B− z2iσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)
−

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−1−Bi− z2iσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)]
[

Φ

(
A+ahσδ1

√
2
(

1−ρ2
δ1iδ2i

)
, B+ z2iσ2

√
2
(

1−ρ2
δ1δ2

)
− τK−1, ρebeo

)]
}ditkdz2i (4.42)
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that can be approximated by equation (4.33)

Li = π
−1
√(

1−ρ2
δ1iδ2i

) Q

∑
q=1

wq

H

∑
h=1

{
whexp

{
2ρδ1iδ2iaqah

}
T

∏
t=1

K

∏
k=0

{[(
1−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)))

+Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
,−B−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−B−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo−

)

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−1−Bi−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, B+aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
− τK−1, ρebeo

)]
}}ditk (4.43)

or

Li = π
−1
√(

1−ρ2
δ1iδ2i

) Q

∑
q=1

wq

H

∑
h=1

{
whexp

{
2ρδ1iδ2iaqah

}
T

∏
t=1

K

∏
k=0

{[(
1−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)))

+Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
,−B−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−B−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)
−

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−1−Bi−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, B+aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
− τK−1, ρebeo

)]
}}ditk (4.44)

where aq and wq are the nodes and weights respectively.

The product over i of the approximate likelihood function can be maximized using

Newton-Raphson Method procedures to find the estimates of the parameters.
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Finally, as the respondents are uncorrelated, the log-likelihood function for N

individuals should be expressed as:

l (Θ,y) =
N

∑
i=1

{
log

{
π
−1
√(

1−ρ2
δ1iδ2i

) Q

∑
q=1

H

∑
h=1

wqwhexp
{

2ρδ1iδ2iaqah
}

T

∏
t=1

K

∏
k=0

{[(
1−Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)))

+Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
,−B−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−B−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)
−

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, τk−1−Bi−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
,−ρebeo

)]
[

Φ

(
A+ahσ1

√
2
(

1−ρ2
δ1iδ2i

)
, B+aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
− τK−1, ρebeo

)]
}}ditk (4.45)

Let

u1,qh = φ1yb
it−1 + γ

′
1xit +β1wi +hb

0 +hb
1yb

i0 +hb
2xi +hb

3xi0 +ahσ1

√
2
(

1−ρ2
δ1iδ2i

)

u1,qh0 = τ0−φ2yo
it−1− γ

′
2zit−β2vi−ho

0−ho
1y0

i0−ho
2zi−ho

3zi0−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
u1,qhk = τk−φ2yo

it−1− γ
′
2zit−β2vi−ho

0−ho
1y0

i0−ho
2zi−ho

3zi0−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
u1,qhk−1 = τk−1−φ2yo

it−1−γ
′
2zit−β2vi−ho

0−ho
1y0

i0−ho
2zi−ho

3zi0−aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
u1,qhK = φ2yo

it−1+γ
′
2zit +β2vi+ho

0+ho
1y0

i0+ho
2zi+ho

3zi0+aqσ2

√
2
(

1−ρ2
δ1iδ2i

)
−τK−1

The study present the auxiliary conditional distribution of κ1i with a constant hb
0.

Therefore, the study removed the constant in the structural equation. Similarly, the

study present the auxiliary conditional distribution of κ2i with a constant ho
0. Therefore,

the study removed the constant in the structural equation.
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Using u1,qh, u1,qh0, u1,qhk, u1,qhk−1 and u1,qhK equations in (4.45), we get,

ℓ(Θ,y) =
N

∑
i=1

log

{
π
−1
√(

1−ρ2
δ1iδ2i

) Q

∑
q=1

M

∑
h=1

wqwhexp
{

2ρδ1δ2aqah
}

T

∏
t=1

K

∏
k=0

{[((
1−Φ

(
u1,qh

))
+Φ

(
u1,qh, u1,qh0,−ρebeo

))]
[
Φ
(
u1,qh, u1,qhk,−ρebeo

)
−Φ

(
u1,qh, u1,qhk−1,−ρebeo

)]
[
Φ
(
u1,qh, u1,qK,ρebeo

)]}}ditk

(4.46)

When the error terms are independent, the likelihood function is given by,

ℓ(Θ,y) =
N

∑
i=1

log

{
π
−1
√(

1−ρ2
δ1iδ2i

) Q

∑
q=1

H

∑
h=1

wqwhexp
{

2ρδ1δ2aqah
}

T

∏
t=1

K

∏
k=0

{[((
1−Φ

(
u1,qh

))
+Φ

(
u1,qh

)
Φ
(

u1,qh0
))]

[
Φ
(
u1,qh

)(
Φ
(
u1,qhk

)
−Φ

(
u1,qhk−1

))] [
Φ
(
u1,qh

)
Φ
(
u1,qK

)]}}ditk

(4.47)

To evaluate the likelihood function at each point, it is necessary to compute N×Q×H

cumulative density functions of the bivariate normal variables with this two-step

quadrature. To find the approximate values of the MLE’s of Θ, we apply Newton-

Raphson. Newton-Raphson method is a gradient based root finding methods that

may be used to determine extreme points of a function, that is, optimization. The

loglikelihood in many problems approaches a quadratic function spreading at its

maximum. Newton-Raphson method possess quadratic convergence characteristics.

Therefore, convergence is fast. The number of iterations is independent of the size of

the system. The solutions to a high accuracy is obtained nearly always in few iterations.

Overall, there is saving time in computation time since fewer numbers of iterations

are required. The Newton-Raphson method approximates these MLE’s by using the
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following procedure:

ψ̂(t+1)

λ̂ (t+1)

=

ψ̂(t)

λ̂ (t)

−
−∂ 2ℓ(ψ,λ ,y)

∂ψ∂ψt −∂ 2ℓ(ψ,λ ,y)
∂ψ∂λ

−∂ 2ℓ(ψ,λ ,y)
∂ψ∂λ

−∂ 2ℓ(ψ,λ ,y)
∂λ∂λ t


−1∂ℓ(ψ,λ ,y)

∂ψt

∂ℓ(ψ,λ ,y)
∂λ


where t = 0, 1, 2, ... is the iteration number. To apply the Newton-Raphson algorithm

we require to calculate the Hessian matrix at every iteration which consists of the

following expressions −∂ 2ℓ(ψ,λ ,y)
∂ψ∂ψt −∂ 2ℓ(ψ,λ ,y)

∂ψ∂λ

−∂ 2ℓ(ψ,λ ,y)
∂ψ∂λ

−∂ 2ℓ(ψ,λ ,y)
∂λ∂λ t


The log-likelihood function can be maximised by applying

Θ
t+1 = Θ

t−H
(
Θ

t)−1G
(
Θ

t) (4.48)

until convergence is attained, where G(Θt) is the gradient function computed at Θt

and is the Hessian matrix computed at H (Θt) . This implies that starting values Θ0

are required. In the subsequent subsections, the entries of Hessian matrix from the log-

likelihood with respect to Θ are obtained. The algorithm is assumed to have converged

when the log likelihood changes by a small constant ε > 0 , that is,
∣∣Θt+1−Θt

∣∣ < ε

where, for instance, ε = 10−5 . According to Efron and Hinkley (1978), the standard

errors of the estimates are computed as the square root of the observed information

matrix, i.e. negative of the second-order differentiation of the log-likelihood function.

The estimates are asymptotically normally distributed:

Θ̂ML ∼ N
(
Θ0, H−1) (4.49)
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4.4 First -Order Differentiations of the Log-Likelihood Function

Let

f (yitk|Θ) = π
−1
√(

1−ρ2
δ1iδ2i

)
exp
{

2ρδ1iδ2iaqah
}

T

∏
t=1

K

∏
k=0

{[((
1−Φ

(
u1,qh

))
+Φ

(
u1,qh, u1,qh0,−ρebeo

))]
[
Φ
(
u1,qh, u1,qhk,−ρebeo

)
−Φ

(
u1,qh, u1,qhk−1,−ρebeo

)]
[
Φ
(
u1,qh, u1,qK− τK−1,ρebeo

)]}ditk
}

(4.50)

then the first derivative with respect to parameter γ1 ∈Θ of equation (4.46) is,

∂ℓ(Θ,y)
∂γ1

=
∂

∂γ1

(
N

∑
i=1

log
Q

∑
q=1

H

∑
h=1

wqwh f (yitk|Θ)

)
=

N

∑
i=1

Q
∑

q=1

H
∑

h=1
wqwh

∂ f (yitk|Θ)
∂γ1

Q
∑

q=1

H
∑

h=1
wqwh f (yitk|Θ)

(4.51)

Using the logarithm, the equation can also be writtern as,

∂ℓ(Θ,y)
∂γ1

=
N

∑
i=1

Q
∑

q=1

H
∑

h=1
wqwh f (yitk|Θ) ∂ log f (yitk|Θ)

∂γ1

Q
∑

r=1

H
∑

l=1
wqwh f (yitk|Θ)

=
N

∑
i=1

Q

∑
q=1

H

∑
h=1

πqhi
∂ log f (yitk|Θ)

∂γ1

(4.52)

where πqhi =
wqwh f (yitk|Θ)

Q
∑

q=1

H
∑

h=1
wqwh f (yitk|Θ)

.

Let Φ(A,B) be a bivariate cumulative distribution function where A and B are standard

normal random variables with correlation ρ . Then, the conditional probability density

function of Y given Z = z is given by

∂Φ(A,B, ρ)

∂A
=

∂

∂A

∫ A

−∞

∫ B

−∞

φ (s, t,ρ)dsdt =
∫ B

−∞

φ (A, t,ρ)dt = φ (A)Φ

(
B−ρA√

1−ρ2

)
(4.53)
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∂Φ(A, B, ρ)

∂λ
=

∂Φ(A,B, ρ)

∂A
∂A
∂λ

= φ (A)Φ

(
B−ρA√

1−ρ2

)
∂A
∂λ

(4.54)

Let the log of f (yitk|Θ) be given by,

log f (yitk|Θ) =− logπ +
1
2

log
(

1−ρ
2
δ1iδ2i

)
+2ρδ1iδ2iaqah+

T

∑
t=1

K

∑
k=0

ditk log
{[((

1−Φ
(
u1,qh

))
+Φ

(
u1,qh

)
Φ
(
u1,qh0

))]
[
Φ
(
u1,qh, u1,qhk,−ρebeo

)
−Φ

(
u1,qh, u1,qhk−1,−ρebeo

)]
[
Φ
(
u1,qh, u1,qK,ρebeo

)]}
(4.55)

In case the errors terms are independent, we get

log f (yitk|Θ) =− logπ +
1
2

log
(

1−ρ
2
δ1iδ2i

)
+2ρδ1iδ2iaqah+

T

∑
t=1

K

∑
k=0

ditk log
{[((

1−Φ
(
u1,qh

))
+Φ

(
u1,qh

)
Φ
(
u1,qh0

))]
[
Φ
(
u1,qh

)(
Φ
(
u1,qhk

)
−Φ

(
u1,qhk−1

))] [
Φ
(
u1,qh

)
Φ
(
u1,qK

)]}
(4.56)

Let

C =
((

1−Φ
(
u1,qh

))
+Φ

(
u1,qh, u1,qh0,−ρebeo

))
(
Φ
(
u1,qh, u1,qhk,−ρebeo

)
−Φ

(
u1,qh, u1,qhk−1,−ρebeo

)) (
Φ
(
u1,qh, u1,qK, ρebeo

))
(4.57)

Let

θ = φ1, γ1, β1, hb
0, hb

1, hb
2

ψ = φ2, γ2, β2, ho
0, ho

1, ho
2

X = yb
it−1, xit , wi, 1, yb

i0, xi

Z = − yo
it−1, − zit , − vi, −1, − yo

i0, − zi
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Let ϕ denote a probability density function.

The differentiation of (4.55) with respect to θ is given by,

∂ log f (yitk|Θ)

∂θ
=

T

∑
t=1

K

∑
k=0

ditk
1
C


−ϕ

(
u1,qh

)
+ϕ

(
u1,qh

)
Φ

u1,qh0 +ρebeou1,qh√
1−ρ2

ebeo


+

ϕ
(
u1,qh

)
Φ

u1,qhk +ρebeou1,qh√
1−ρ2

ebeo

−ϕ
(
u1,qh

)
∗

Φ

u1,qhk−1 +ρebeou1,qh√
1−ρ2

ebeo


+

ϕ
(
u1,qh

)
Φ

u1,qhK−ρebeou1,qh√
1−ρ2

ebeo

X (4.58)

For σ1, we use transformations on parameters to ensure that in the optimization

process, each σ1 remains non- negative. For σ1 we use exponential transformation,

that is, d1 = log(σ1) and ed1 = σ1, then we differentiate with respect to d1 .

∂Φ(A,B)
∂d1

= ϕ (A)
∂Φ(A,B)

∂A
∂A
∂σ1

∂σ1

∂d1
, ∂A

∂σ1
= ah

√
2
(

1−ρ2
δ1iδ2i

)
(4.59)

and ∂σ1
∂d1

= ed1 . The differentiation of (4.55) with respect to d1 is given by,

∂ log f (yitk|Θ)

∂d1
=

T

∑
t=1

K

∑
k=0

ditk
1
C


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(
u1,qh

)
+ϕ
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)
Φ
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Φ
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
−ϕ
(
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)
Φ
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ebeo
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ϕ
(
u1,qh

)
Φ
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1−ρ2

ebeo

ed1ah

√
2
(

1−ρ2
δ1δ2

)
(4.60)
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The differentiation of (4.55) with respect to ψ is given by,

∂ log f (yitk|Θ)

∂ψ
=

T

∑
t=1

K

∑
k=0

ditk
1
C
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(
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 (4.61)

For σ2, we use transformations on parameters to ensure that in the optimisation

process, each σ2 remains non-negative. For σ2 we use exponential transformation, that

is, d2 = log(σ2) and ed2 = σ2 then in the derivation, we differentiate with respect to

d2. The differentiation of (4.55) with respect to d2 is given by,

∂ log f (yitk|Θ)

∂d2
=

T

∑
t=1

K

∑
k=0

ditk
1
C


ϕ
(
u1,qh0

)
Φ

u1,qh +ρebeou1,qh0√
1−ρ2

ebeo

+
ϕ

(
u1,qhk

)
Φ

u1,qh +ρebeou1,qhk√
1−ρ2

ebeo
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(
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Φ
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1−ρ2

ebeo


+

−ϕ
(
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)
Φ
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ebeo
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−aqed2

√
2
(

1−ρ2
δ1iδ2i

))
(4.62)

Plackett (1954) derived the formula for the partial derivative of the cumulative bivariate

normal distribution function with respect to ρ .

∂Φ(A, B, ρ)

∂ρ
=

1

2π
√

1−ρ2
exp
(
−A2 +B2−2ρAB

2(1−ρ2)

)
= φ (A, B, ρ) (4.63)
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Here, we estimate the additional parameter r = a tanh(ρ) instead of estimating ρ . We

apply Fisher transformation to find ρ on the interval [−1, 1] .The differentiation of the

bivariate normal distribution function with respect to r is given by,

∂Φ(A,B)
∂ r

=
∂Φ(A,B)

∂ρ

∂ρ

∂ r
(4.64)

where ∂Φ(A,B)
∂ r = ∂Φ(A,B)

∂ρ

∂ρ

∂ r Using (4.63) and (4.64), the differentiation of (3.55) with

respect to re is given by,

∂ log f (yitk|Θ)
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=
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(
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)]} −4exp(2re)

(1+ exp(2re))
2

(4.65)
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Using 4.64, the differentiation of (4.55) with respect to r is given by,

∂ log f (yitk|Θ)

∂ r
=

−ρδ1iδ2i(
1−ρ2

δ1iδ2i

) 4exp(2r)

(1+ exp(2r))2 + 2aqah
4exp(2r)

(1+ exp(2r))2

+
T

∑
t=1

K

∑
k=0

ditk
1
C

{[
ϕ
(
u1,qh

)
ahσδb

+−ϕ
(
u1,qh

)
ahσδb

Φ

u1,qh0 +ρebeou1,qh√
1−ρ2

ebeo

+

ϕ
(
u1,qh0

)
aqσδoΦ

u1,qh +ρebeou1,qh0√
1−ρ2

ebeo

+
−ϕ

(
u1,qh

)
ahσδb

Φ

u1,qhk +ρebeou1,qh√
1−ρ2

ebeo

+

ϕ
(
u1,qhk

)
aqσδoΦ

u1,qh +ρebeou1,qhk√
1−ρ2

ebeo

−
−ϕ

(
u1,qh

)
ahσδb

Φ

u1,qhk−1 +ρebeou1,qh√
1−ρ2

ebeo

+

ϕ
(

u1,qhk−1
)

aqσδoΦ

u1,qh +ρebeo u1,qhk−1√
1−ρ2

ebeo

+
−ϕ

(
u1,qh

)
ahσδb

Φ

u1,qhK−ρebeou1,qh√
1−ρ2

ebeo

−
ϕ
(
u1,qhK

)
aqσδoΦ

u1,qh−ρebeou1,qhK√
1−ρ2

ebeo


√

2ρδ1iδ2i√(
1−ρ2

δ1iδ2i

) 4exp(2r)

(1+ exp(2r))2

(4.66)

To impose the monotone order of the threshold values, we estimate instead a

transformation of these values α1 = τ1, αk = log(τk− τk−1) k = 2, 3, 4, ..., K and

τk = τk−1 + eαk . The derivatives of the bivariate normal distribution function with
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respect to αk is given by,

∂Φ(A,B)
∂αk

= ϕ (A)
∂Φ(A,B)

∂τk

∂τk

∂αk
(4.67)

where ∂τk
∂αk

= eαk and ∂τ1
∂α1

= 1.

Using (4.67), the differentiation of (4.55) with respect to α2 and αk are given by,

∂ log f (yitk|Θ)
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(4.69)

In case the error terms are independent, the first order derivatives are given below. The

differentiation of (4.56) with respect to θ was given by,

∂ log f (yitk|Θ)
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(4.70)

The differentiation of (4.56) with respect to d1 is given by,

∂ log f (yitk|Θ)
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The derivative of (4.56) with respect to ψ is given by,
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The differentiation of (4.56) with respect to d2 is given by,
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Using (4.64), the differentiation of (4.56) with respect to r is given by,

∂ log f (yitk|Θ)
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Using equation (4.67), the differentiation of (4.56) with respect to α2 and αk are given

by,

∂ log f (yitk|Θ)
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∂ log f (yitk|Θ)
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The second order derivatives are given in the appendix.

4.5 Model selection

The study evaluated the statistical fit of the models using AIC for model selection.

Formally,

AIC =−2logL+2r (4.77)

where r denoted the number of estimates and logL the maximized log-likelihood

function. The model with the smallest AIC is preferred.
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CHAPTER FIVE

BAYESIAN APPROACH FOR ZERO INFLATION DYNAMIC PANEL

ORDERED PROBIT MODEL

5.1 Introduction

This chapter constitutes a discussion on Bayesian analysis, model selection and

Average partial effects ZIDPOP models.

5.2 Bayesian Analysis

The Bayesian estimation based on MCMC simulation depends on a collection of

conditional distributions to infer each parameter’s marginal distribution. Therefore,

models with a lot of parameters and intricated multiple-layered probability

specifications can be disintegrated into a collection of easier sub-problems. In addition,

Bayesian approach permit priors knowledge, recognized intuition and experience in the

inference.

The posterior distribution will for most models not have a closed-form analytical

expression, but rather be a high dimensional integral. The development over the last

decades of highly efficient Markov chain Monte Carlo simulation algorithms combined

with increased access to inexpensive high-speed computing have made Bayesian

statistical estimation possible for a large variety of distributions, and furthermore

allowed estimation of models not tractable or feasible with classical statistical tools.

The ZIDPOP models described earlier naturally leads to Bayesian modelling.

Sampling from the posterior allows us to make predictions while taking into account

parameter uncertainty. Bayesian analysis can easily incorporate truncated distributions

and allows us to use subjective information in our priors.

Conditioned on the unobserved heterogeneity κ , the responses on yit (t = 1, 2, ..., T ),

are considered uncorrelated. Using equation (4.24) and (4.25), the contribution to

the likelihood for respondent i, conditional on the explanatory variables and the
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unobserved heterogeneities, would be the joint probability

p(yit |others) =
n

∏
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∏
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∏
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+
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(5.1)

where Φ(.) is the cumulative standard normal distribution.

eb
it

eo
it

∼ N (0, Σebeo)

where

Σebeo =

 1 ρebeo

ρebeo 1


κb

1i

κo
2i

∼ N
(
0, Σδ1δ2

)
where

Σδ1δ2 =

 σ2
δ1

ρδ1δ2σδ1σδ2

ρδ1δ2σδ1σδ2 σ2
δ2


be correlation and covariance matrix for errors terms at initial and waves respectively

and unobserved effect between the binary and ordinal variables.
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5.3 Prior Distributions

Let Θ denote a vector of parameters to be estimated and is given by

Θ =
{

φ1, φ2, γ1, β1, γ2, β2, Σebeo, Σδ1δ2, τ
}

. The prior distribution of κ was

considered to possess a hierarchical structure. Then, assumming independence, the

hierarchical structure is given by

p(Θ) = p(φ1) p(φ2) p(γ1) p(β1) p(γ2) p(β2)∗

p
(
κ1|0, Σδ1δ2

)
p
(
Σδ1δ2

)
p
(
κ2|0, Σδ1δ2

)
p(τ) p(Σebeo) (5.2)

The study adopted a Bayesian hierarchical model approach for estimation. The prior

specifications for most of the parameters are non-informative. The motive for taking

non-informative priors is due to least influence on inference.

5.4 Posterior Distributions

The posterior distributions are constructed by coalescing the prior distributions and

likelihood function based on Bayes’ theorem, as:

p(Θ|yit ,x,z,w,v) = p(Θ)
n

∏
i=1

T

∏
t=1

∏
k=0[(

1−Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i

))
+

Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρ

)]
n

∏
i=1

T

∏
t=1

K

∏
k>0

[
Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

τk−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρ

)
−Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

τk−1−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρ

)]
(5.3)

We assumed non-informative normal priors for θ = (φ1, φ2, γ1, γ2, β1, β2), with

mean θ ∗ and variance Ωθ , that is, θ ∼ N (θ ∗, Ωθ ) that are picked to produce proper
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distribution, that is, integrates to 1 but diffuse with large variances. ,

p(θt) ∝ Ωθ
−1/2 exp

{
−1/

2(θ −θ
∗)′Ωθ

−1 (θ −θ
∗)
}

(5.4)

5.5 Full conditional distributions

The Metropolis-Hastings algorithm was used due to the difficult to sample from the

unknown full conditional distributions. The full conditional distributions are given by

the product of likelihood function and prior distribution. The full conditional posterior

distributions to implement the MCMC algorithm are given by,

p(θ |x,z,w,v,θθ ) ∝ |Ωθ |−
1
2 exp

(
−1

2
(θ −θ

∗)′Ω−1
θ

(θ −θ
∗)

) n

∏
i=1

T

∏
t=1

∏
k=0[(

1−Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2x̄i +δ1i

))
+Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i,−ρ

)]
n

∏
i=1

T

∏
t=1

K

∏
k>0

[
Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

τk−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρ

)
−Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

τk−1−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρ

)]
(5.5)

The normal distributions applied as the proposal distributions are symmetric. The

probability of acceptance is given by,

α

(
x(i)|x(i−1)

)
= min

1,
π

(
x(i)
)

π
(
x(i−1)

)
 (5.6)

Since q
(

x(i)|x(i−1)
)
= q

(
x(i−1)|x(i)

)
for symmetrical distribution. Let u ∼U(0, 1) .

If u < α then admit the proposal: x(i)← xcandidate (admit a newly proposed value) else

fail to admit the proposal: x(i)← x(t−1) .
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The prior for variance –covariance matrix

Σδ1δ2 =

 σ2
δ1

ρδ1δ2σδ1σδ2

ρδ1δ2σδ1σδ2 σ2
δ2


was inverse Wishart distributions denoted by Σ∼ IW (v,Λ) with density.

p(Σ) =
|Λ|

v
2

|Σ|
v+d+1

2 2
vd
2 Γd

( v
2

) exp
(
−1

2
tr
(
ΛΣ
−1)) (5.7)

p(Σ) ∝ |Σ|−
v+d+1

2 exp
(
−1

2
tr
(
ΛΣ
−1)) (5.8)

Λ is a positive definite d dimensional matrix and v is a scalar value representing degrees

of freedom. In order to get a proper prior we should set v > d− 1. At a multivariate

level the prior mean is E (Σ) = Λ

v−d−1 .

Using an inverse Wishart prior for the variance-covariance matrix induces an inverse

scale chi-square distribution for each variance σi∼ invχ2
(

v−d +1, λii
v−d+1

)
where λii

it is a diagonal entry of Λ. λiiis obtained by decomposing Σ into a diagonal matrix with

standard deviation and correlation matrix with diagonal elements 1 and off-diagonal

elements ρi j. The conditional distribution of the correlation coefficient is given by

p
(
ρ|σ2

1 ,σ
2
2
)

∝
(
1−ρ

2)− v+d+1
2 exp

(
−

λ22σ2
1 +λ11σ2

2 −2λ12σ1σ2

σ2
1 σ2

2 (1−ρ2)

)
(5.9)

Assuming an IW (v0, D0) where v0 = 2 and D0 = I, I is an identity matrix, draw Σδ1δ2

from its full conditional

π
(
Σδ1δ2|others

)
∝ π

(
Σδ1δ2 |κi

)
∝ IW

(
n+ v0, D0 +κ

′
iκi
)

(5.10)

We assume non-informative normal priors for individual random effect. The prior for
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the individual random effect in binary and ordinal part are,

κb
1i

κo
2i

∼ N
(
0, Σδ1δ2

)

where

Σδ1δ2 =

 σ2
δ1

ρδ1iδ2iσδ1σδ2

ρδ1iδ2iσδ1σδ2 σ2
δ2


and ρδ1iδ2i represent the correlation between κ1i and κ2i . To specify the Metropolis

algorithm, we specify the proposal distribution hκ (κ) , from which proposed values are

sampled. If we choose fκ that is in the exponential family as the proposal distribution

then the acceptance function assumes a particularly an orderly form. Let κ denote

the preceding draw from the conditional distribution of κ|y and propose a value,

κ∗ , for the kth component of κ using the proposal distribution. If we represent

κ∗ = (κ1, κ2, ..., κi−1, κi
∗, κi+1, ..., κi), next we admit κ∗ as the new value with

probability αi (κ, κ∗) and otherwise we retain κ . Here αi (κ, κ∗) is given by

αi (κ, κ
∗) = min

(
1,

fκ|y (κ
∗|y, others)hκ (κ)

fκ|y (κ|y, others)hκ (κ∗)

)
(5.11)

Upon choosing hκ = fk, the second term in braces in the above equation simplifies to

fκ|y (κ
∗|y, others)hκ (κ)

fκ|y (κ|y, others)hκ (κ∗)
=

n
∏
i=1

T
∏

t=1
fy|κ (yit |κ∗,others) fκ

(
κ∗|Σδ1δ2

)
fκ

(
κ|Σδ1δ2

)
n
∏
i=1

T
∏

t=1
fy|κ (yit |κ,others) fκ

(
κ|Σδ1δ2

)
fκ

(
κ∗|Σδ1δ2

)

=

n
∏
i=1

T
∏

t=1
fy|κ (yit |κ∗,others)

n
∏
i=1

T
∏

t=1
fy|κ (yit |κ,others)

(5.12)

The only unknown parameter in Θ is ρ , the correlation between eb
it and eo

it . The values

of ρ lies within -1 to 1 interval. Uniform distribution or a proper distribution based on

reparametrization are the choices for prior distribution of ρ . Assume v represent the
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hyperbolic arc-tangent transformation of the correlation coefficient, that is,

v = a tanh(ρ) (5.13)

and using hyperbolic tangent transformation of v return ρ = tanh(v). We consider

v ∼ N
(
v∗,σ2

v
)

. The full conditional posterior distribution to implement the MCMC

algorithm is given by,

f (v|others) ∝ σ
−1
v exp

{
−(v− v∗)

2σ2
v

} n

∏
i=1

T

∏
t=1

∏
k=0[(

1−Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2x̄i +δ1i

))
+Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i,−ρ

)]
n

∏
i=1

T

∏
t=1

K

∏
k>0

[
Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

τk−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρ

)
−Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

τk−1−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρ

)]
(5.14)

The proposal distribution for each of the variables of interest given above is normal

distribution that is a symmetric distribution. When selecting the prior distributions for

the cut points, τ ′s , care is required because of the order constraints. Drawing values

from the complete conditional distribution for τ ′s leads to slow mixing. Instead, we

apply Cowles (1996) algorithm to simulate τ ′s. Let i = 1 and σMH = 0.05/K. This

value of σMH is a starting, and tuning of σMH may be required if suitable acceptance

rates for τ are not attained. Create a candidate g for bringing up-to-date τk−1 : For

j = 1, ..., K− 1 , sample g j ∼ N
(

τ
i−1
j ,σ2

MH

)
trimmed to the interval

(
g j−1, τ

i−1
j+1

)
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(
take g−1 =−∞, g0 = 0 and gK = ∞

)
. Compute the acceptance rate R by

R =
n

∏
i=1

T

∏
t=1

[
Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

gyi−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρebeo

)
−

Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

gyi−1−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρebeo

)]
/[

Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

τyi−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ1i, −ρebeo

)
−

Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2xi +δ1i,

τyi−1−φ2yo
it−1− γ

′
2zit−β

′
2vi−ho

0−ho
1y0

i0−ho
2zi−δ2i, −ρebeo

)]
K−1

∏
j=1

Φ

((
τ

i−1
j+1− τ

i−1
j

)
/σMH

)
−Φ

((
g j−1− τ

i−1
j

)
/σMH

)
Φ
((

g j+1−g j
)
/σMH

)
−Φ

((
τ

i−1
j−1−g j

)
/σMH MH

) (5.15)

Set τ(i) = g with probability R. Otherwise, take τ(i) = τ(i−1).

The first term denotes the contribution from the likelihood function. The second term

denotes difference in the normalization of the proposal densities on the trimmed normal

intervals from which candidate points are sampled. When implementing this algorithm,

the acceptance rate for the cut points must be monitored. When the rate are below 25%

or above 50%, σMH should be raised or lowered, respectively.

A single long chain as proposed by Geyer (1992) was applied for the developed

models. Geyer (1992) claimed that applying a single longer chain is superior than

applying a number of smaller chains with different initial values. We applied this

scheme in our study.

5.6 Model Selection

Complex models normally offer a better fit. AIC selection procedures include

“penalty” part to compensate for gains in model fit due to increased complexity.

For fixed effect models, the complexity–as evaluated by the number of model

parameters–is determined without difficulty. It is easier to determine the complexity

as measured by the number of model parameters in the fixed effect model as it is easier
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to count the parameters. This is infeasible in a random effect models as the number of

parameters is not well-defined. Every random effect will add roughly one parameter

to the model when it have large variance. However, the number of parameter added

will be near zero when it have small variance (implying a huge amount of shrinkage).

Spiegelhalter et al. (2002) dealt with this hurdle by proposing a Deviance Information

Criterion given by, goodness of fit plus a penalty for complexity

DIC = D(θ)+ pD (5.16)

where D(θ) = E (D(θ) |y) is the posterior mean of the deviance, D(θ), and pD =

D(θ)− D̂(θ) = E [D(θ) |y]−D [E (θ |y)] is the difference in the posterior mean of the

deviance and the deviance computed at the posterior mean of the parameters.

The deviance is given by the negative twice the log-likelihood is a measure of the

model’s relative fit, whereas pD represents a penalty for the model’s complexity. The

model with the smallest DIC provide the best fit. The DIC is easily obtained from the

MCMC samples. DIC is estimated from posterior samples:

DIC = 2D−D
(
θ
)

(5.17)

Where θ = 1
L

L
∑

t=1
θ (t) and D = 1

L

L
∑

t=1
−2log p(y|θ t) . L is the number of the iterations.

5.7 Average Partial Effects

Interpretations of the coefficients in the zero inflated dynamic panel ordered probit

models are more difficult than in the usual regression setting. The natural conditional

mean function in the model is unavailable.

The response, yit , is just a brand for the binary or ordinal outcomes. The size of the

coefficients are not informative and therefore the exact inference of the coefficients is

basically unclear. The influence of a shift in a single variable relies on all the model

parameters, the data, and which probability (cell) is of interest. The interpretation of the

parameters relies on the probabilities themselves. The hurdle is solved by the average

partial effects that deliver the impacts on the specific probabilities per unit change in
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the covariates. Average partial effects gives a good estimation of the amount of change

in dependent variable that will be yielded by a single-unit change in covariates. In case

of binary independent variables, the average partial effects measure discrete change,

i.e. how do predicted probabilities shift as the binary covariate shift from 0 to 1?

Average partial effects are obtained by averaging the individual marginal effects and

gives a clue on the magnitude of the relationship between ordinal observation and the

covariates. They are evaluated by scaling the coefficient vector by γa = 1√
1+σ2 . This

rescaling is needed in a random effect probit model in order to make valid comparisons

in terms of coefficient estimates and partial effects across different specification as

pointed out by Arulampalam (1999). A positive average partial effects implying a

positive relationship with ordered response and vice versa. The study has obtain the

average partial effects for the covariate ω = (xi, xit , zi, zit) on a range of probabilities

assuming the errors terms have a bivariate normal distribution. A positive coefficient

means that an increase in the predictor lead to an increase in the predicted probability

and vice versa.

For a binary covariate such as wi, its average partial effects on probability, say P, is the

difference in the probability computed at 1 and 0, conditional on observable values of

covariates, that is,

APEi

(
β ,yb∗

it = 1
)
=

β

NT
×

N

∑
I=1

T

∑
t=1

{
Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
11+hb

0 +hb
1yb

i0 +hb
2x̄i +hb

3xi0

)
−Φ

(
φ1yb

it−1 + γ
′
1xit +β

′
10+hb

0 +hb
1yb

i0 +hb
2xi +hb

3xi0 +hb
3xi0

)
(5.18)

For continuous covariates, the average partial effects is given by the partial derivative of

the probability of interest with respect to ωi. Wooldridge (2002) showed that evaluating

the average partial effects at the observed values of the covariates for each observation

and averaging the estimates over the observations provides a consistent estimate of the
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APEs.

APEi

(
λωi,y

b∗
it = 1

)
=

λωi

NT
×

N

∑
I=1

T

∑
t=1

ϕ

(
φ1yb

it−1 + γ
′
1xit +β

′
1wi +hb

0 +hb
1yb

i0 +hb
2x̄i +hb

3xi0

)
(5.19)

where λωi is the coefficient in the inflation part related to variable ωi. In terms of the

zeros response, the effect on the probability of non-participation and zero consumption

were,

APEi

(
λωi,y

b∗
it = 0

)
=

λωi

NT

N

∑
I=1

T

∑
t=1
−ϕ
(
u1,qh

)
(5.20)

while

APEi

(
λωi, βωi, yb∗

it = 1,yo∗
it = 0

)
=

1
NT

N

∑
I=1

T

∑
t=1

Φ

−u1,qh0 +ρebeou1,qh√
1−ρ2

ebeo

ϕ
(
u1,qh

)
λωi

−

Φ

u1,qh−ρebeou1,qh0√
1−ρ2

ebeo

ϕ
(
−u1,qh0

)
βωi

 (5.21)

The average partial effects for zero inflation was the sum of equation (5.20) and (5.21);

that is,

APEi (yo∗
it = 0) = APEi

(
yb∗

it = 0
)
+APEi

(
yb∗

it = 1,yo∗
it = 0

)
(5.22)

The effects for the remaining choices are: Let u1,qhk = τk−W , u1,qhk−1 = τk−1−W

and u1,qhK =W − τK−1. W = φ2yo
it−1 + γ ′2zit +β2vi +ho

0 +ho
1y0

i0 +ho
2zi +ho

3zi0
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APEi

(
λωi, βωi, yb∗

it = 1,yo∗
it = 1

)
=

N

∑
i=1

T

∑
t=1

Φ

(τ2−W )+ρebeou1,qh√
1−ρ2

ebeo

−Φ

−W +ρebeou1,qh√
1−ρ2

ebeo

ϕ
(
u1,qh

)
λωi

−

Φ

u1,qh ++ρebeo (τ2−W )√
1−ρ2

ebeo

ϕ (τ2−W )−Φ

u1,qh−ρebeoW√
1−ρ2

ebeo

ϕ (−W )

βωi

(5.23)

APEi

(
λωi, βωi, yb∗

it = 1,yo∗
it = 2

)
=

N

∑
i=1

T

∑
t=1

Φ

(τ3−W )+ρebeou1,qh√
1−ρ2

ebeo

−Φ

τ2−W +ρebeou1,qh√
1−ρ2

ebeo

ϕ
(
u1,qh

)
λωi−Φ

u1,qh +ρebeo (τ3−W )√
1−ρ2

ebeo

ϕ (τ3−W )−

Φ

u1,qh +ρebeo (τ2−W )√
1−ρ2

ebeo

ϕ (τ2−W )

βωi (5.24)

APEi

(
λωi, βωi, yb∗

it = 1,yo∗
it = k

)
=

N

∑
i=1

T

∑
t=1

Φ

(τk−W )+ρebeou1,qh√
1−ρ2

ebeo

−Φ

τk−1−W +ρebeou1,qh√
1−ρ2

ebeo

ϕ
(
u1,qh

)
λωi−Φ

u1,qh ++ρebeo (τk−W )√
1−ρ2

ebeo

ϕ
(
τ j−W

)
−

Φ

u1,qh +ρebeo (τk−1−W )√
1−ρ2

ebeo

ϕ (τk−1−W )

βωi (5.25)
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APEi

(
λωi, βωi, yb∗

it = 1,yo∗
it = K

)
=

N

∑
i=1

T

∑
t=1

Φ

1−
(τK−W )+ρebeou1,qh√

1−ρ2
ebeo

∗
ϕ
(
u1,qh

)
λωi +

Φ

u1,qh +ρebeo (τK−W )√
1−ρ2

ebeo

ϕ (τK−W )

βωi (5.26)

The asymptotic standard errors of the APEi are evaluated using the Delta method as

the square roots of the main diagonal elements of

Var
(

ÂPE
)
= APEiVar (Θ)APE ′i (5.27)

Var (Θ) represents the variance-covariance matrix.
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CHAPTER SIX

RESULTS AND DISCUSSIONS

6.1 Introduction

This chapter introduces the data simulation, analysis, summary of the real data and the

finding for both simulation and real data.

6.2 Data Simulation

This section describe the data generating process that was used to simulate the data.

In order to generate the first observation, the study operated the scheme twenty-five

periods before data were observed. The number of the respondents was (n = 750),

(s = -25) represent the time the system was in operation before the first observation

was made and the number of observations for the present simulation, so that each

respondent was observed from -25 to 36 periods such as months. The study generated

the covariates, the unobserved heterogeneities and the idiosyncratic errors for both

binary and ordinal models. The initial outcome was assumed to follow a Bernoulli

trial with probability 0.5 for Dynamic panel binary probit model. The initial outcome

was assumed to follow a binomial trial with probability 0.5 for Dynamic panel ordered

probit model.

The data creating processes for the latent variables were centered on a dynamic

random-effects specification given by equation 5.1 and 5.7. The dynamic random

effects binary probit model was created by yb
it = 1

(
yb∗

it > 0
)

and yb
it = 0

(
yb∗

it ≤ 0
)
. The

dynamic random effects ordered probit model was created by yo
it = k (τk−1 < yo∗

it ≤ τk).

The zero inflation was created by yit = yb
ity

o
it as proposed by Harris and Zhao (2007).

The number of Gauss Hermite quadrature nodes and weights was 10 in the experiment.

Lesaffre and Spiessens (2001) pointed out that a number of 10 nodes and weights

is often adequate and further increment only produces negligible differences. When

the algorithm failed to converge, different starting values were utilized to achieve

maximisation of the log-likelihood function.

The following parameters were used for simulation. The parameters for the binary
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model were fixed at φ1 = 0.5, β11 =−1.0, γ11 =−1.0 and σ1 = 1.0. The inter-period

correlation was σ2
1/
(
σ2

1 +1
)
= 0.5. The parameters for the ordinal model were fixed at

φ2 = 0.5, γ21 = 0.4 , γ22 = 1.0 , β21 = 1.0 and σ2 = 1.0. The inter-period correlation was

σ2
2/
(
σ2

2 +1
)
= 0.5. The total number of the replications (R) was 200. The covariance

matrix and the correlation matrix were given by .

Σδ1δ2 =

 1 0.5

0.5 1



Σebeo =

 1 0.5

0.5 1


The maximization of the log-likelihood function was done using Newton-Raphson

algorithm. This algorithm requires starting values. The starting values for realizing the

global maximum of the log-likelihood function were obtained from the dynamic panel

binary probit model and DPOP model using the pglm function in the pglm R-package.

The study used the estimates from these Dynamic panel binary probit model and DPOP

model as the starting values for the Newton-Raphson algorithm. The convergence was

speedy based on these estimates. The algorithm was assumed to have converged when

the log-likelihood shifted by a small constant, that is, ε < 10−5. The study computed

the bivariate normal integrals using pbinorm function in the VGAM R-package.

6.3 Assessing the Performance of the Models

RMSE was used to evaluate the performance the ZIDPOPC and ZIDPOPI models. Let

θ be the true parameter. Let θ̂ r
k be the estimates of kth parameter from rth replication, R

be the total number of the replications, and θk be the actual value of the kth parameter

from the model. The mean of the estimated kth parameter was calculated as follows:

θ k =
1
R

R

∑
r=1

θ̂
r
k (6.1)
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Root Mean Square Error that includes bias and variability was utilized to assess the

accuracy of the estimates. It was calculated for every parameter. It was given by

RMSE (θk) =

√√√√√ R
∑

r=1

(
θ̂ r

k −θ
)2

R
(6.2)

RMSE is always positive. A value of zero implies a perfect fit to the data. This value

is rarely attained in practice. An estimator with a lower value is always preferred than

one with a higher value. A lower value indicate a better fit to the data.

6.4 Results for Maximum likelihood estimates based on n=750, T=10 and

10-Point Gauss Hermite quadrature for DPOP, ZIDPOPI and ZIDPOPC

models from the simulated data

Table 6.1: Maximum likelihood estimates based on n=750, T=10 and 10-Point Gauss
Hermite quadrature for DPOP, ZIDPOPI and ZIDPOPC models from the
simulated data

MODELS DPOP ZIDPOPI ZIDPOPC

Par TRUE Ests Stderr p val Ests Stderr p val Ests Stderr p val

hb
0 -0.623 0.088 0.000 -0.681 0.085 0.000

φ1 0.5 0.533 0.062 0.000 0.591 0.062 0.000

γ11 -1.0 -0.934 0.041 0.000 -0.978 0.040 0.000

β1 -1.0 -0.643 0.089 0.000 -0.658 0.088 0.000

hb
1 1.175 0.103 0.000 1.144 0.103 0.000

hb
2m -0.072 0.148 0.627 0.067 0.147 0.650

hb
2i 0.239 0.049 0.000 0.259 0.048 0.000

σ1 1.0 0.758 0.077 0.000 0.771 0.072 0.000

ho
0 -1.103 0.055 0.000 -0.487 0.096 0.000 -0.649 0.078 0.000

φ2 0.5 0.241 0.025 0.000 0.581 0.043 0.000 0.578 0.040 0.000

γ21 0.4 0.148 0.017 0.000 0.412 0.035 0.000 0.400 0.028 0.000

γ22 1.0 0.406 0.018 0.000 1.003 0.061 0.000 0.997 0.036 0.000

β2 0.7 -0.456 0.062 0.000 0.546 0.104 0.000 0.367 0.085 0.000
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ho
1 0.562 0.046 0.000 0.847 0.089 0.000 0.867 0.065 0.000

ho
2m1 0.003 0.105 0.978 0.014 0.143 0.923 -0.051 0.135 0.708

ho
2m2 -0.074 0.107 0.488 0.025 0.145 0.865 0.075 0.137 0.585

ho
2i1 -0.102 0.033 0.002 -0.149 0.043 0.001 -0.137 0.040 0.001

ho
2i2 -0.208 0.035 0.000 -0.332 0.053 0.000 -0.372 0.048 0.000

σ2 1.0 0.948 0.042 0.000 0.670 0.108 0.000 0.674 0.074 0.000

ρebeo 0.5 0.462 0.093 0.000

ρδ1iδ2i 0.5 0.337 0.236 0.154 0.403 0.105 0.000

τ1 2.6 1.119 0.025 0.000 2.533 0.163 0.000 2.536 0.083 0.000

τ2 4.2 2.084 0.043 0.000 4.154 0.143 0.000 4.169 0.071 0.000

AIC 11501.730 9347.912 8664.670

Table 6.1 shows the parameters, their true values, estimates, standard errors, p values

and AIC values for DPOP, ZIDPOPI and ZIDPOPC models. All the parameters whose

p values were less than 0.05 were significnat at 5%. All the parameters whose p values

were less than 0.01 were significant at 1%. The initial observations in both participation

decision hb
1 and consumption levels ho

1 were significant at 1% in the three models.

The correlation between the error terms in ZIDPOPC model was significant at 1%

implying that the factors affecting the participation decision are the same as the one

affecting the consumption levels. The correlation between the unobserved individual

effects in ZIDPOPC model was not significant at 5% implying that the factors affecting

the unobserved individual effects in participation decision are not the same as the one

affecting the unobserved individual effects at consumption levels. The variance of the

individual effects in participation decision was 0.771. This indicated that 37.28% of

the latent error variance is associated with individual effect, as evaluated by the intra-

unit correlation coefficient in smoking decision. The variance of the individual effects

for the decision on consumption levels was 0.674. This indicated that 31.24% of the

latent error variance is associated with individual effect, as evaluated by the intra-unit

correlation coefficient at consumption levels.
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The Akaike Information Criteria (AIC) indicated an assessment of goodness-of-fit.

The model with the smallest AIC was considered to provide a better fit for the data

than the rest. The ZIDPOPC model clearly fitted the data better than ZIDPOPI and

DPOP models. The ZIDPOPI model clearly provided a better fit for the data than

DPOP model.

6.5 Assessing the Accuracy of the Estimators in the Models

The accuracy of the three models was evaluated by RMSE.

Table 6.2: Comparison of DPOP, ZIDPOPI and ZIDPOPC when n=350 and T=10
based on RMSE from the simulated data.

MODELS DPOP ZIDPOPI ZIDPOPC

Par TRUE Ests RMSE Ests RMSE Ests RMSE

φ1 0.5 0.542 0.106 0.612 0.151

γ11 -1.0 -0.953 0.066 -0.975 0.045

β1 -1.0 -0.745 0.314 -0.714 0.299

σ1 1.0 0.780 0.237 0.810 0.241

φ2 0.5 0.236 0.267 0.544 0.056 0.566 0.085

γ21 0.4 0.157 0.244 0.416 0.037 0.369 0.044

γ22 1.0 0.390 0.610 1.001 0.037 0.972 0.040

β2 0.7 -0.480 1.180 0.586 0.161 0.387 0.331

σ2 1.0 0.933 0.101 0.730 0.280 0.676 0.344

ρebeo 0.5 0.476 0.072

ρδ1iδ2i 0.5 0.264 0.258 0.391 0.208

τ1 2.6 1.110 1.490 2.567 0.081 2.558 0.114

τ2 4.2 2.059 2.143 4.150 0.105 4.138 0.111

Table 6.2 shows the parameters, their true values, estimates and RMSE for the three

modes when n=350 and T=10.



95

Table 6.3: Comparison of DPOP, ZIDPOPI and ZIDPOPC when n=750 and T=10
based RMSE from the simulated data.

MODELS DPOP ZIDPOPI ZIDPOPC

Par TRUE Ests RMSE Ests RMSE Ests RMSE

φ1 0.5 0.533 0.058 0.591 0.102

γ11 -1.0 -0.934 0.074 -0.978 0.049

β1 -1.0 -0.643 0.362 -0.658 0.357

σ1 1.0 0.758 0.242 0.771 0.238

φ2 0.5 0.241 0.260 0.581 0.082 0.578 0.080

γ21 0.4 0.148 0.252 0.412 0.040 0.400 0.015

γ22 1.0 0.406 0.594 1.003 0.011 0.997 0.023

β2 0.7 -0.456 1.158 0.546 0.197 0.367 0.345

σ2 1.0 0.948 0.062 0.670 0.332 0.674 0.329

ρebeo 0.5 0.462 0.080

ρδ1iδ2i 0.5 0.337 0.176 0.403 0.131

τ1 2.6 1.119 1.482 2.533 0.089 2.536 0.092

τ2 4.2 2.084 2.117 4.154 0.059 4.169 0.082

Table 6.3 shows the parameters, their true values, estimates and RMSE for the three

models when n=750 and T=10. for the comparison purpose, Although the ZIDPOPI

and ZIDPOPC models had more parameters than DPOP model, for the intent of

appraisal, comments were confined to only shared parameters, that is, φ2, γ21, γ22,

β2, σ2, τ1 and τ2. The specific RMSEs of all of the parameters (6 out of 7 compared),

were lower in the ZIDPOPI and ZIDPOPC models than the DPOP model for different

values of n. This indicated that the ZIDPOPI and ZIDPOPC models’ estimates were

more accurate than DPOP models’ parameters.

6.6 Assessing the Consistency of the Estimators in the Models
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Table 6.4: Maximum likelihood estimates based on n=350 and T=10 for DPOP,
ZIDPOPI and ZIDPOPC models

MODELS DPOP ZIDPOPI ZIDPOPC

Par TRUE Ests stderror Ests stderror Ests stderror

φ1 0.5 0.542 0.092 0.612 0.094

γ11 -1.0 -0.953 0.060 -0.975 0.061

β1 -1.0 -0.745 0.137 -0.714 0.137

σ1 1.0 0.780 0.106 0.810 0.107

φ2 0.5 0.236 0.036 0.544 0.060 0.566 0.059

γ21 0.4 0.157 0.024 0.416 0.043 0.369 0.040

γ22 1.0 0.390 0.026 1.001 0.059 0.972 0.052

β2 0.7 -0.480 0.091 0.586 0.145 0.387 0.128

σ2 1.0 0.933 0.061 0.730 0.116 0.676 0.109

ρebeo 0.5 0.476 0.141

ρδ1iδ2i 0.5 0.264 0.200 0.391 0.157

τ1 2.6 1.110 0.037 2.567 0.150 2.558 0.121

τ2 4.2 2.059 0.063 4.150 0.131 4.138 0.107

Table 6.4 shows the parameters, estimates and their standard errors when n=350 and

T=10.

Table 6.5: Maximum likelihood estimates based on n=750 and T=10 for DPOP,
ZIDPOPI and ZIDPOPC models

MODELS DPOP ZIDPOP ZIDPOPC

Par TRUE Ests stderror Ests stderror Ests stderror

φ1 0.5 0.533 0.062 0.591 0.062

γ11 -1.0 -0.934 0.041 -0.978 0.040

β1 -1.0 -0.643 0.089 -0.658 0.088

σ1 1.0 0.758 0.077 0.771 0.072

φ2 0.5 0.241 0.025 0.581 0.043 0.578 0.040
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γ21 0.4 0.148 0.017 0.412 0.035 0.400 0.028

γ22 1.0 0.406 0.018 1.003 0.061 0.997 0.036

β2 0.7 -0.456 0.062 0.546 0.104 0.367 0.085

σ2 1.0 0.948 0.042 0.670 0.108 0.674 0.074

ρebeo 0.5 0.462 0.093

ρδ1iδ2i 0.5 0.337 0.236 0.403 0.105

τ1 2.6 1.119 0.025 2.533 0.163 2.536 0.083

τ2 4.2 2.084 0.043 4.154 0.143 4.169 0.071

Table 6.5 shows the parameters, estimates and their standard errors when n=750 and

T=10.

The study compared the estimates in Table 5.4 when n=350 and T=10 and Table 6.5

when n=750 and T=10. The results from these two tables indicated that as n increases

from 350 to 750, the estimates tend to the true values. For example, the true value of

φ1 was 0.5, when n=350, φ1 was 0.612 and when n=750, φ1 was 0.591 for ZIDPOPC

model. This showed that as n was increased, the estimates tend to the true value. This

indicated that ZIDPOPC model produced consistent estimators.

6.7 Results for Bayesian Approach from the Simulated Data

The MCMC simulation was run for 40,000 iterations. The first 10,000 iterations were

disposed of as they represented the burn-in period. The thinning interval was six.

The convergences were analyzed using trace, density and autocorrelation plots. The

acceptance rates was maintained between 20% and 30% for all the parameters except

the cut points. The acceptance rates was maintained between 25% and 50% for the cut

points only as proposed by Cowles (1996).

Table 6.6: Bayesian inference based on n=750, T=10 for DPOP, ZIDPOPI and
ZIDPOPC models

MODELS DPOP ZIDPOP ZIDPOPC

Par TRUE Ests SD Ests SD Ests SD
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hb
0 -0.638 0.088 -0.712 0.100

φ1 0.5 0.496 0.060 0.517 0.062

γ11 -1.0 -1.005 0.039 -1.062 0.040

β1 -1.0 -0.732 0.093 -0.754 0.100

hb
1 1.278 0.104 1.329 0.110

hb
2m 0.048 0.168 0.031 0.166

hb
2i 0.291 0.055 0.299 0.054

σ1 1.0 0.922 0.032 0.938 0.033

ho
0 -1.181 0.070 -0.586 0.098 -0.742 0.088

φ2 0.5 0.196 0.025 0.498 0.042 0.498 0.040

γ21 0.4 0.171 0.017 0.434 0.029 0.403 0.028

γ22 1.0 0.403 0.018 1.078 0.037 1.055 0.036

β2 0.7 -0.534 0.083 0.610 0.099 0.420 0.101

ho
1 0.652 0.050 1.030 0.071 0.973 0.069

ho
2m1 -0.001 0.135 0.052 0.168 -0.028 0.166

ho
2m2 -0.035 0.141 0.176 0.176 0.170 0.162

ho
2i1 -0.077 0.044 -0.177 0.052 -0.133 0.051

ho
2i2 -0.252 0.045 -0.414 0.058 -0.393 0.054

σ2 1.0 0.860 0.029 0.904 0.032 0.924 0.033

ρebeo 0.5 0.431 0.067

ρδ1iδ2i 0.5 0.413 0.041 0.435 0.040

τ1 2.6 1.156 0.026 2.816 0.083 2.731 0.082

τ2 4.2 2.141 0.043 4.514 0.109 4.429 0.109

DIC 17146.5 8658.465 8633.924

The Table 6.6 indicate the parameters, estimates, standard errors and DIC values.

There is a moderate association between the error terms in ZIDPOPC model of

0.431 implying that the factors affecting the participation decision are the same as

the one affecting the consumption levels.There is a moderate association between the
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unobserved heterogeneities in ZIDPOPC model of 0.435 implying that the factors

affecting the unobserved individual effects in participation decision are the same as the

one affecting the unobserved individual effects at consumption levels. The variance of

the individual effects in participation decision was 0.938. This indicated that 46.80% of

the latent error variance was associated with the unobserved heterogeneity, as evaluated

by the intra-unit correlation coefficient in participation decision. The variance of the

individual effects for the decision on consumption levels was 0.924. This indicated that

46.06% of the latent error variance was associated with the unobserved heterogeneity,

as evaluated by the intra-unit correlation coefficient at consumption levels. The

Deviance Information Criteria (DIC) indicated an assessment of the goodness-of-fit.

The model with the smallest DIC is considered to fit the better than the rest. The

ZIDPOPC model clearly provided a better than ZIDPOPI and DPOP models. The

ZIDPOPI model clearly provided a better than the DPOP model.

6.8 Assessing the Accuracy of the Estimators in the Models

Table 6.7: Bayesian inference based on n=350 and T=10 for DPOP, ZIDPOPI and
ZIDPOPC models

MODELS DPOP ZIDPOP ZIDPOPC

Par TRUE Ests RMSE Ests RMSE Ests RMSE

φ1 0.5 0.482 0.101 0.532 0.070

γ11 -1.0 -1.053 0.085 -1.056 0.064

β1 -1.0 -0.757 0.273 -0.779 0.232

σ1 1.0 0.933 0.070 0.943 0.062

φ2 0.5 0.201 0.300 0.511 0.050 0.540 0.053

γ21 0.4 0.172 0.228 0.406 0.035 0.404 0.033

γ22 1.0 0.419 0.582 1.061 0.087 1.078 0.086

β2 0.7 -0.490 1.193 0.594 0.199 0.447 0.285

σ2 1.0 0.861 0.140 0.916 0.085 0.926 0.075

ρebeo 0.5 0.430 0.079

ρδ1iδ2i 0.5 0.415 0.087 0.433 0.070
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τ1 2.6 1.130 1.472 2.718 0.202 2.787 0.206

τ2 4.2 2.120 2.082 4.453 0.217 4.511 0.350

Table 6.7 shows the parameters, estimates and RMSE for the three modes when n=350

and T=10.

Table 6.8: Bayesian inference based on n=750 and T=10 for DPOP, ZIDPOPI and
ZIDPOPC models

MODELS DPOP ZIDPOP ZIDPOPC

Par TRUE Ests RMSE Ests RMSE Ests RMSE

φ1 0.5 0.496 0.035 0.517 0.057

γ11 -1.0 -1.005 0.036 -1.062 0.073

β1 -1.0 -0.732 0.307 -0.754 0.073

σ1 1.0 0.922 0.078 0.938 0.063

φ2 0.5 0.196 0.305 0.498 0.059 0.498 0.042

γ21 0.4 0.171 0.206 0.434 0.053 0.403 0.020

γ22 1.0 0.403 0.805 1.078 0.085 1.055 0.065

β2 0.7 -0.534 0.298 0.610 0.187 0.420 0.303

σ2 1.0 0.860 0.140 0.904 0.096 0.924 0.078

ρebeo 0.5 0.431 0.073

ρδ1iδ2i 0.5 0.413 0.088 0.435 0.067

τ1 2.6 1.156 1.444 2.816 0.223 2.731 0.148

τ2 4.2 2.141 2.059 4.514 0.336 4.429 0.254

Table 6.8 shows the parameters, estimates and RMSE for the three modes when n=750

and T=10.

Although the ZIDPOPI and ZIDPOPC models had more parameters than DPOP model,

for the intent of appraisal, comments are confined to only the shared parameters, that

is, φ2, γ21, γ22, β2, σ2, τ1 and τ2. The majority of the RMSE for the ZIDPOPI and

ZIDPOPC models were lower than the DPOP model. The specific RMSE of all of the



101

parameters (6 out of 7 compared), were lower in the ZIDPOPI and ZIDPOPC models

than the DPOP model for different values of n. This indicated that the ZIDPOPI and

ZIDPOPC models were more accurate than DPOP model.

6.9 Assessing the Consistency of the Estimators in the Models

Table 6.9: Bayesian inference based on n=350 and T=10 for DPOP, ZIDPOPI and
ZIDPOPC models

MODELS DPOP ZIDPOP ZIDPOPC

Par TRUE Ests stderror Ests stderror Ests stderror

φ1 0.5 0.482 0.091 0.532 0.089

γ11 -1.0 -1.053 0.059 -1.056 0.058

β1 -1.0 -0.757 0.144 -0.779 0.145

σ1 1.0 0.933 0.048 0.943 0.049

φ2 0.5 0.201 0.034 0.511 0.061 0.540 0.060

γ21 0.4 0.172 0.025 0.406 0.041 0.404 0.041

γ22 1.0 0.419 0.026 1.061 0.056 1.078 0.055

β2 0.7 -0.490 0.124 0.594 0.152 0.447 0.150

σ2 1.0 0.861 0.043 0.916 0.047 0.926 0.048

ρebeo 0.5 0.430 0.095

ρδ1iδ2i 0.5 0.415 0.061 0.433 0.058

τ1 2.6 1.130 0.037 2.718 0.125 2.787 0.1291

τ2 4.2 2.120 0.062 4.453 0.169 4.511 0.175

Table 6.9 shows the parameter, estimates and thier standard errors for n=350 and T=10.

Table 6.10: Bayesian inference based on n=750 and T=10 for DPOP, ZIDPOPI and
ZIDPOPC models

MODELS DPOP ZIDPOP ZIDPOPC

Par TRUE Ests stderror Ests stderror Ests stderror

φ1 0.5 0.496 0.060 0.517 0.062
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γ11 -1.0 -1.005 0.039 -1.062 0.040

β1 -1.0 -0.732 0.093 -0.754 0.100

σ1 1.0 0.922 0.032 0.938 0.033

φ2 0.5 0.196 0.025 0.498 0.042 0.498 0.040

γ21 0.4 0.171 0.017 0.434 0.029 0.403 0.028

γ22 1.0 0.403 0.018 1.078 0.037 1.055 0.036

β2 0.7 -0.534 0.083 0.610 0.099 0.420 0.101

σ2 1.0 0.860 0.029 0.904 0.032 0.924 0.033

ρebeo 0.5 0.431 0.067

ρδ1iδ2i 0.5 0.413 0.041 0.435 0.040

τ1 2.6 1.156 0.026 2.816 0.083 2.731 0.082

τ2 4.2 2.141 0.043 4.514 0.109 4.429 0.109

Table 6.10 shows the parameter, estimates and their standard errors for n=750 and

T=10.

The study compared estimates in Table 6.9 when n=350 and T=10 and Table 5.10

when n=750 and T=10. The results from Table 6.9 and Table 6.10 indicated that as

n increases from 350 to 750, the estimates tend to their true values. For example, the

true value of φ1 is 0.5, when n=350, φ1 is 0.532 for ZIDPOPC model and when n=750,

φ1 is 0.517. This showed that as n is raised, the estimates tend to the true value. This

indicated that ZIDPOPC model produced consistent estimators.

6.10 Application of the Models to Real Life Data

The main dataset used in this thesis was the National Longitudinal Survey of Youth

1997 (NLSY97) that follows the lives of a sample of American youth. The survey

is sponsored and directed by the U.S Bureau of Labour Statistics and managed by

the Center for Human Resource Research at the Ohio State University. Interviews

are conducted by the National Opinion Research Center at the Chicago University.

The survey include data on the youths’ family and community backgrounds to help

researcher assess the impact of schooling and other environmental factors on these



103

labour market entrants. The panel dataset comprised of 8,984 youth who were first

interrogated in 1997 when they were between twelve and sixteen years old as of 31

December 1996. Therefore, they were born between 1981 and 1985.

The survey design of the NLSY97 included the smoking habits, socioeconomic and

respondent’s traits such as race, gender etc. and other variables that are not associated

with this study. The study discarded the respondents that had missing values in either

the response variable or the covariates. The proportion of missing values were quite

high in the early grades as several respondents were let off from the smoking questions

in the early stages of the study due to legal and privacy concerns. The study only

considered the cohort that was in Grade 6 and above in 1998 and was enrolled in

school. The year 1998 was considered the initial observation of the panel data. The

study covered eight years of the observations.

The study used the smoking profile used by Subair (2018) in his thesis entitled “Excess

Zeros, Endogenous Binary Indicators, and Self-Selection Bias with Application to First

Marriage, Smoking and Drinking Outcomes”. The study created a smoking profile of

2,500 individuals. The smoking habits of the individuals was based on three questions.

The study generated none consumption based on the following questions: “Have you

ever smoked a cigarette?” and “During the last 30 days, how many days did you

smoke a cigarette?”. Individuals who always answered “No” to the first question have

absolute inelastic demand for cigarettes, and for such individuals, zero demands for

cigarettes are optimal choices. Individuals who answer “None” to the second question

are affiliated two categories: those whose optimal choice of zero consumption are

defined by corner solutions and infrequent smokers. The study then constructed non-

zero consumption from the question “When you smoked during the last 30 days, how

many cigarettes did you usually smoke each day?”

Let yit denote the number of sticks of cigarette consumed by a respondent i at time

t. yit is the number of sticks of cigarettes smoked on days that respondent i smokes,

including none consumption. For instance, in our case, i = 1, 2, ..., 2500 and t =

0, 1, 2, ..., 8.
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Describing the frequency distribution of the crude yit measurements does not

actually aid in condensing the smoking intensities for an empirical analysis as some

respondents reported to have smoked 99 sticks of cigarette on the days they smoked.

Transforming the crude number of cigarettes smoked to 0-3 ordinal one-unit interval

is popular in smoking literature. Therefore, the study created four ordinal outcomes

of smoking intensities from their corresponding observed values yit . This can be

summarized as follows;

yit =



0 if respondent i is not a current smoker or has never smoked,

1 if respondent i smokes weekly or less,

2 if respondent i smokes daily and smokes < 20 sticks

3 if respondent i smokes daily and smokes ≥ 20 sticks.

(6.3)

The ordinal values yit = 0, 1, 2, 3, stands for zero, low, moderate and high levels of

smoking intensities.

6.11 Frequency Distribution Tables of Real Data

This section present the summarised statistics of smoking intensities and all their

explanatory variables.

Table 6.11: Distribution of Smoking Intensities 1998-2001

Ordinal 1998 1999 2000 2001

Outcomes N % N % N % N %

0 1889 75.56 1776 71.04 1700 68.00 1640 65.60

1 386 15.44 444 17.60 456 18.24 505 20.20

2 167 6.68 199 7.96 221 8.84 224 8.96

3 58 2.52 85 3.40 123 4.92 131 5.24

The Table 6.11 shows the frequency and percentages of ordinal outcomes between

1998 and 2001 for the National Longitudinal Survey of Youth 1997 (NLSY97).
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Table 6.12: Distribution of Smoking Intensities 2002-2004

Ordinal 2002 2003 2004 2005 2006

Outcomes N % N % N % N % N %

0 1592 63.68 1582 63.28 1560 62.40 1585 63.40 1594 63.76

1 517 20.68 486 19.44 506 20.24 489 19.56 469 18.76

2 239 9.56 276 11.04 258 10.32 251 10.04 254 10.16

3 152 6.08 156 6.24 176 7.04 175 7.00 183 7.32

The Table 6.12 shows the frequency and percentages of ordinal outcomes between

2002 and 2006 for the National Longitudinal Survey of Youth 1997 (NLSY97).

Table 6.13: Distribution of Smoking status since the last date of interview 1998-2002

Ordinal 1998 1999 2000 2001 2002

Outcomes N % N % N % N % N %

No smoke 1602 64.08 1586 63.44 1524 60.96 1492 59.68 1443 57.72

Smoke 898 35.92 914 36.56 976 39.04 1008 40.32 1057 42.28

The Table 6.13 shows the frequency and percentages of binary outcomes between 1998

and 2002 of whether the respondent smoke or not since the last day of interview for

the National Longitudinal Survey of Youth 1997 (NLSY97).

Table 6.14: Distribution of Smoking status since the last date of interview 2003-2006

Ordinal 2003 2004 2005 2006

Outcomes N % N % N % N %

No smoke 1432 57.28 1450 58.00 1458 58.32 1464 58.56

Smoke 1068 42.72 1050 42.00 1042 41.68 1036 41.44

The Table 6.14 shows the frequency and percentages of binary outcomes between 2003

and 2006 of whether the respondent smoke or not since the last day of interview for

the National Longitudinal Survey of Youth 1997 (NLSY97).
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Table 6.15: Current Age of the Respondent 1998-2006

Years Min Median Mean Max

1998 13.00 16.00 15.83 19.00

1999 14.00 17.00 16.80 20.00

2000 15.00 18.00 17.88 21.00

2001 16.00 19.00 18.87 22.00

2002 18.00 20.00 19.87 23.00

2003 18.00 21.00 20.82 24.00

2004 19.00 22.00 21.86 25.00

2005 20.00 23.00 22.83 26.00

2006 21.00 24.00 23.78 27.00

The Table 6.15 shows the summary of age between 1998 and 2006 for the National

Longitudinal Survey of Youth 1997 (NLSY97).

Table 6.16: Distribution of Gender

Gender N %

Male 1233 49.32

Female 1267 50.68

The Table 6.16 shows the frequency and percentages of gender between 1998 and 2006

for the National Longitudinal Survey of Youth 1997 (NLSY97).

Table 6.17: Distribution of Race

Race N %

White 2109 84.36

Black 391 15.64

The Table 6.17 shows the frequency and percentages of race between 1998 and 2006

for the National Longitudinal Survey of Youth 1997 (NLSY97).
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6.12 Results for the Maximum Likelihood Estimation from the Smoking Data

Table 6.18: Maximum likelihood estimates based on n=2500 and T=8 for DPOP,
ZIDPOPI and ZIDPOPC Models from the Smoking data

MODELS DPOP ZIDPOP ZIDPOPC

Var Ests Stderr p value Ests Stderr p value Ests Stderr p value

φ1 1.340 0.083 0.000 1.406 0.095 0.000

Age -0.036 0.049 0.460 0.026 0.033 0.436

Edu 0.062 0.063 0.324 0.055 0.031 0.080

Gender 0.087 0.111 0.431 0.101 0.068 0.141

Race -0.399 0.152 0.009 -0.325 0.091 0.000

hb
1 1.821 0.172 0.000 1.584 0.113 0.000

σ1 1.768 0.142 0.000 0.998 0.059 0.969

interc -1.477 0.320 0.000 -0.687 0.389 0.078 0.602 0.517 0.244

φ2 0.576 0.016 0.000 0.452 0.027 0.000 0.419 0.026 0.000

Age 0.064 0.015 0.000 0.102 0.022 0.000 0.090 0.024 0.000

Edu 0.030 0.013 0.027 0.037 0.016 0.023 0.014 0.016 0.395

Gender 0.159 0.039 0.000 0.235 0.049 0.000 0.271 0.064 0.000

ho
2 0.876 0.029 0.000 0.479 0.039 0.000 0.603 0.043 0.000

σ2 1.382 0.030 0.000 0.690 0.049 0.000 0.954 0.051 0.354

ρebeo 0.020 0.088 0.818

ρδ1iδ2i 0.735 0.075 0.000 0.212 0.072 0.003

τ1 1.331 0.019 0.000 1.496 0.031 0.000 2.124 0.133 0.000

τ2 2.421 0.028 0.000 2.865 0.032 0.000 3.305 0.131 0.205

AIC 25855.38 25338.1088 24777.4488

Table 6.18 shows the variables, estimates, standard errors and p values. The variables

whose estimates are positive means an increase in the variable leads to in increase in the

predicted probability of smoking and verse versa. For instance, the estimate of age in

ZIDPOPC model was 0.026 implying an increase in age will results into an increase in
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the predicted probability of smoking. The variables whose p values are less than 0.05

are significant at 5%. In case of ZIDPOPC model, state depedence, race and initial

observation from the decision to smoke or not are are signficant at 5% while state

dependence, age, gender, initial observation, correlation between individual effects

and the first cut point from decision on consumption level are significant at 5%. The

variance of the individual effects in participation decision was 0.998. This indicated

that 49.90% of the latent error variance was associated with the individual effects, as

evaluated by the intra-unit correlation coefficient in smoking decision. The variance of

the individual effects for the decision on consumption levels was 0.954. This indicated

that 47.65% of the latent error variance was associated with the individual effects , as

evaluated by the intra-unit correlation coefficient at consumption levels.

The correlation coefficient between the error terms was not significant at 5%. This

implied that the variables affecting the participation decision are different from the

one affecting consumption levels. The correlation coefficient between the individual

effects was significant at 1%. This implied that the variables affecting the individual

effects at participation decision were the same as the one affecting individual effects at

consumption levels.

The obtained coefficients for first period in smoking decision was significant at 1%,

which indicated a positive association between the first period smoking decision and

latent smoking variable. Hence, this signify the importance of controlling for smoking

decision at the beginning of observations. The obtained coefficients for first period

decision on the number of cigarettes smoked observation was significant at 1%, which

implied a positive association between the first period consumption levels observation

and latent consumption levels. Hence, this signify the importance of controlling the

reported smoking intensities at the beginning of the observations.

The Akaike Information Criteria (AIC) indicated an assessment of goodness-of-fit.

The model with the smallest AIC is considered to fit the data better than the rest. The

ZIDPOPC model clearly provided a better fit than the ZIDPOPI and DPOP models.

The ZIDPOPI model is clearly provided a better than the DPOP models.
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Table 6.19: Average Partial Effects for variables in ZIDPOPC model from the Real
data

Var Ests Stderror t values p value

φ1 yb
it = 0 0.328 0.031 10.524 0.000

Age yb
it = 0 -0.003 0.000 -30.423 0.000

Edu yb
it = 0 -0.007 0.000 -32.041 0.000

Gender yb
it = 0 0.018 0.001 14.633 0.000

Race yb
it = 0 -0.057 0.005 -10.941 0.000

φ1 yo
it = 0 -0.029 0.001 -38.730 0.000

y0
it = 1 0.025 0.001 38.730 0.000

y0
it = 2 0.040 0.001 38.730 0.000

y0
it = 3 0.017 0.000 38.730 0.000

Age y0
it = 0 -0.008 0.000 -41.754 0.000

y0
it = 1 0.000 0.000 -41.754 0.000

y0
it = 2 0.012 0.000 41.754 0.000

y0
it = 3 0.020 0.000 41.754 0.000

Edu y0
it = 0 -0.005 0.000 -61.881 0.000

y0
it = 1 0.007 0.000 61.881 0.000

y0
it = 2 0.004 0.000 61.881 0.000

y0
it = 3 0.004 0.000 61.881 0.000

Gender y0
it = 0 0.007 0.001 8.868 0.000

y0
it = 1 0.436 0.028 15.518 0.000

y0
it = 2 0.194 0.013 15.518 0.000

y0
it = 3 0.024 0.002 15.518 0.000

φ2 y0
it = 0 -0.029 0.015 -1.935 0.053

Age y0
it = 0 -0.005 0.000 -38.730 0.000

Edu y0
it = 0 0.002 0.000 41.754 0.000

Gender y0
it = 0 -0.012 0.000 -61.881 0.000
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Table 6.19 indicates the estimated average partial effects, standard errors and p values.

It summarizes the APEs of the time invariant variables, time variant variables and state

dependence at participation and consumption levels. All the covariates whose p values

are less than 0.05 are statistically significant at 5%. The covariates with positive sign

implying a positive association with the participation or consumption at all levels and

vice versa.

The average partial effects for the state dependence in non-participation decision

was 0.328. This indicated that as one move from the previous year to the next, the

probability of smoking would increase by 32.8%. The average partial effects for the

age in non-participation decision was -0.003. This indicated that single-unit rise in age

will provides a 0.3% decrease in the chances of smoking for an otherwise “average”

individual while. The average partial effects for the education in non-participation

decision was -0.007. This indicated that single-unit rise in age would provide a 0.7%

decrease in the chances of smoking for an otherwise “average” individual. The average

partial effects for the gender in non-participation decision was 0.018. This indicated

that as one change from female to male, the probability of smoking and smoking

would increase by 1.8%. The average partial effects for the gender in non-participation

decision was -0.057. This indicated that as one change from white to black race, the

probability of smoking would decrease by 5.7%.

The average partial effects for the state dependence, at various consumption levels,

that is , zero, low, moderate and high consumption levels were -0.029 0.025, 0.040

and 0.017, respectively. This indicated that as one move from the previous year to the

next, the probability of various consumption levels, that is , zero, low, moderate and

high would change by −2.9%, 2.5%, 4.0% and 1.7% respectively. The average partial

effects for the age, at various consumption levels, that is, zero, low, moderate and high

consumption levels were -0.008, 0.000, 0.012 and 0.020, respectively. This indicated

that one-unit increase in age would produce −0.8%, 0.0%, 1.2% and 2.0% change in

various consumption levels, that is , zero, low, moderate and high consumption levels

respectively. The average partial effects for the education, at various consumption
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levels, that is, zero, low, moderate and high consumption levels were -0.005, 0.007,

0.004 and 0.004, respectively. This indicated that one-unit increase in education would

produce −0.5%, 0.7%, 0.4% and 0.4% change in various consumption levels, that is ,

zero, low, moderate and high consumption levels respectively

The average partial effects for the gender, at various consumption levels, that is,

zero, low, moderate and high consumption levels were 0.007, 0.436, 0.194 and 0.024,

respectively. This indicated that as one change from female to male, the probability

of various consumption levels, that is , zero, low, moderate and high would change

by 0.7%, 43.6%, 19.4% and 2.4% respectively. The average partial effects for the state

dependence, age, education and gender, at various zero consumption level were -0.029,

-0.005, 0.002 and -0.012, respectively. This indicated that as one change from female

to male, the probability of various consumption levels, that is, zero, low, moderate and

high would change by −2.9%, −0.5%, 0.2% and −1.2% respectively.

6.13 Results for Bayesian inference for Real Data

Table 6.20: Bayesian inference based on n=2500 and T=8 for DPOP, ZIDPOPI and
ZIDPOPC Models from the Smoking data

MODELS DPOP ZIDPOP ZIDPOPC

Var Ests SD Ests SD Ests SD

φ1 1.417 0.061 1.475 0.074

Age 0.002 0.037 -0.005 0.037

Edu 0.090 0.047 0.092 0.050

Gender 0.083 0.070 0.099 0.071

Race -0.313 0.098 -0.306 0.095

σ1 0.986 0.019 0.987 0.019

φ2 0.547 0.016 0.399 0.020 0.411 0.021

Age 0.071 0.015 0.085 0.024 0.089 0.023

Edu 0.032 0.014 0.012 0.016 0.013 0.016

Gender 0.186 0.050 0.262 0.071 0.257 0.066

ho
2 0.932 0.034 0.708 0.039 0.706 0.039
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σ2 1.023 0.019 0.976 0.019 0.975 0.018

ρebeo 0.116 0.080

ρδ1iδ2i 0.468 0.021 0.470 0.022

τ1 1.347 0.020 1.958 0.054 1.958 0.051

τ2 2.455 0.028 3.195 0.063 3.192 0.059

DIC 39812.15 23040.9 23075.09

Table 6.20 shows estimated parameters and their standard errors for the three models.

The variables whose estimates are positive means an increase in the variable leads

to in increase in the predicted probability of smoking and verse versa. For instance,

the estimate of age in ZIDPOPC model was -0.005 implying an increase in age

will results into a decrease in the predicted probability of smoking. The variance of

individual effects for participation was 0.986. This indicated that 49.30% of the latent

error variance was associated with the individual effects, as evaluated by the intra-

unit correlation coefficient in smoking decision. The variance of individual effects

for consumption levels was 0.976. Approximately 48.79% of the latent error variance

was associated with the individual effects, as evaluated by the intra-unit correlation

coefficient at consumption levels.

There was a weak correlation coefficient of 0.116 between the error terms. This

implied that the variables affecting the participation are different from the one affecting

consumption levels. There was a moderate correlation coefficient of 0.468 between

the individual effects. This implied that the variables affecting the individual effects

at participation were the same as the one affecting individual effects at consumption

levels.

The Deviance information criterion (DIC) indicated an assessment of goodness-of-fit.

The model with the smallest DIC was considered to provide a better than the rest. The

ZIDPOPI model clearly provided a better than the ZIDPOPC and DPOP model. This

is attributed to the very weak correlation between the error terms in ZIDPOPC model.

The ZIDPOPC model clearly provided a better than the DPOP model.
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Table 6.21: Average Partial Effects for variables in Correlated Zero Inflated Dynamic
Panel Ordered Probit Model (ZIDPOPC) for Real data

Var Ests Stderror t value p value

φ1 yb
it = 0 0.353 0.026 13.465 0.000

Age yb
it = 0 0.001 0.000 26.737 0.000

Edu yb
it = 0 -0.012 0.001 -20.079 0.000

Gender yb
it = 0 0.019 0.001 14.014 0.000

Race yb
it = 0 -0.055 0.005 -10.503 0.000

φ1 y0
it = 0 -0.055 0.001 -47.156 0.000

y0
it = 1 0.031 0.001 47.156 0.000

y0
it = 2 0.039 0.001 47.156 0.000

y0
it = 3 0.016 0.000 47.156 0.000

Age y0
it = 0 -0.007 0.000 -42.983 0.000

y0
it = 1 0.000 0.000 -42.983 0.000

y0
it = 2 0.011 0.000 42.983 0.000

y0
it = 3 0.017 0.000 42.983 0.000

Edu y0
it = 0 -0.006 0.000 -62.240 0.000

y0
it = 1 0.011 0.000 62.240 0.000

y0
it = 2 0.004 0.000 62.240 0.000

y0
it = 3 0.004 0.000 62.240 0.000

Gender y0
it = 0 0.008 0.001 11.055 0.000

y0
it = 1 0.419 0.028 15.139 0.000

y0
it = 2 0.196 0.013 15.139 0.000

y0
it = 3 0.022 0.001 15.139 0.000

φ2 y0
it = 0 -0.031 0.006 -5.489 0.000

Age y0
it = 0 -0.007 0.000 -47.156 0.000

Edu y0
it = 0 0.006 0.000 42.983 0.000

Gender y0
it = 0 -0.011 0.000 -62.240 0.000
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Table 6.21 shows the estimated average partial effects, t values, p values and

95% confidence intervals. All the covariates are statistically significant at 1%. The

covariates with positive sign indicated a positive association with the participation and

consumption at all levels and vice versa.

The average partial effects for the state dependence in non-participation decision and

participation decision were 0.353. This indicated that as one move from the previous

year to the next, the probability of smoking would increase by 35.3%. The average

partial effects for the age in non-participation decision was 0.001. This indicated that

single-unit rise in age will produce a 0.1% increase in the chances of smoking for an

otherwise “average” individual. The average partial effects for the education in non-

participation decision was -0.012. This indicated that one-unit increase in age would

produce a −1.2% decrease in the probability of smoking for an otherwise “average”

individual. The average partial effects for the gender in non-participation decision and

participation decision was 0.019. This indicated that as one change from female to

male, the probability of smoking would increase by 1.9%. The average partial effects

for the gender in non-participation decision was -0.055 and -0.061. This indicated that

as one change from white to black race, the probability of smoking would decrease by

5.5%.

The average partial effects for the state dependence, at various consumption levels,

that is , zero, low, moderate and high consumption levels were -0.055, 0.031, 0.039

and 0.016, respectively. This indicated that as one move from the previous year to the

next, the probability of various consumption levels, that is, zero, low, moderate and

high would change by −5.5%, 3.1%, 3.9% and 1.6% respectively. The average partial

effects for the age, at various consumption levels, that is, zero, low, moderate and high

consumption levels were -0.007, 0.000, 0.011 and 0.017, respectively. This indicated

that one-unit increase in age would produce −0.7%, 0.0%, 1.1% and 1.7% change in

various consumption levels, that is, zero, low, moderate and high consumption levels

respectively.

The average partial effects for the education, at various consumption levels, that
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is, zero, low, moderate and high consumption levels were -0.006, 0.011, 0.004 and

0.004, respectively. This indicated that one-unit increase in education would produce

−0.6%, 1.1%, 0.4% and 0.4% change in various consumption levels, that is, zero,

low, moderate and high consumption levels respectively. The average partial effects

for the gender, at various consumption levels, that is , zero, low, moderate and high

consumption levels were 0.008, 0.419, 0.196 and 0.022 respectively. This indicated

that as one change from female to male, the probability of various consumption levels,

that is, zero, low, moderate and high would change by 0.8%, 41.9%, 19.6% and 2.2%

respectively. The average partial effects for the state dependence, age, education and

gender, at various zero consumption level were -0.031, -0.007, 0.006 and -0.011,

respectively. This indicated that as one change from female to male, the probability

of various consumption levels, that is, zero, low, moderate and high would change by

−3.1%, −0.7%, 0.6% and −1.1% respectively
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CHAPTER SEVEN

SUMMARY, CONCLUSION AND RECOMMENDATIONS

7.1 Introduction

This chapter discusses the summary, conclusions, recommendation and suggestions for

further research.

7.2 Summary

The purpose of this thesis was to develop a Zero inflated dynamic panel ordered

probit model with both independent and uncorrelated error terms and compare them

with Dynamic panel ordered probit model. Unlike the Semi-parametric Zero inflated

dynamic panel probit model with selectivity proposed by Christelis and Galdeano

(2009) that assumed that the unobserved individual effects have a non-parametric

distribution, the develop Zero inflated dynamic panel ordered probit model with both

independent and uncorrelated error terms in Chapter Three in this thesis are considered

to follow a bivariate normal distribution that has a parametric distribution.

The parametric distribution enabled the estimation of variances in both participation

and consumption levels that facilitated the estimation of inter-unit correlation and

correlation between the unobserved individual effects. The inter-unit correlation

facilitated the determination of latent error variance that was associated with the

individual effects. The correlation between the unobserved individual effects explained

whether the factors affecting unobserved individual effects in participation decision

were the same as those affecting the unobserved individual effects at consumption

levels. The heaping in the Semi-parametric Zero inflated dynamic panel probit model

proposed by Christelis and Galdeano (2009) allowed the choice of cut points to

address bunching in the number of cigarettes smoked and identify the variance of the

dynamic panel ordered probit model. The Zero inflated dynamic panel ordered probit

model with both correlated and uncorrelated error terms developed in this thesis were

assumed to contain unknown cut points due to absence of heaping.

Instead of using Akay (2009) approach for initial conditions that was found to yield
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severe bias in estimation by Rabe-Hesketh and Skrondal (2013), the study used their

approach that used first response variable, initial covariates and within-means of

covariates omitting first values. The Semi-parametric Zero inflated dynamic panel

probit model proposed by Christelis and Galdeano (2009) used simulated maximum

likelihood approach proposed by Lee and Oguzoglu (2007) and Kano (2008) where the

individual’s effects are integrated out by computing the double integral by simulation.

Mulkay (2015) pointed that this procedure could be very time-consuming even with

fast modern computer. This thesis used an alternative approach in Chapter Three

proposed by Raymond et al. (2007) based on a two-step Gauss-Hermite Quadrature

to compute the double integral. The two-step Gauss-Hermite Quadrature have a

satisfactory performance in finite sample for a small number of nodes and weights.

The performance of the models was evaluated using Akaike Information Criteria. The

model with smallest AIC was considered to fit data better than the rest.

The two-step Gauss-Hermite Quadrature can results into high computational cost.

The high cost of direct computing the double integrals can be reduced in a Bayesian

approach. This study proposed Bayesian approach in Chapter Four for the Zero inflated

dynamic panel ordered probit model with both independent and correlated error terms

using Metropolis Hasting and Gibb sampling and evaluated the convergence using

autocorrelation, density and trace plots. The performance of the models was evaluated

using Deviance Information Criteria. The model with smallest DIC was considered

to provide a better fit than the rest. The Average partial effects for the Zero inflated

dynamic panel ordered probit model with both independent and correlated error terms

were also presented in Chapter Four to facilitate the interpretations of the results.

Simulation studies and discussions were presented in Chapter Five. The Simulation

studies were used to evaluate the theoretical properties of DPOP, ZIDPOPI and

ZIDPOPC estimators. The theoretical properties are the accuracy and consistency of

the estimators in the model. The chapter also contain an empirical study where the

models were used to determine the persistence in decision to participate in smoking

and the decision on consumption levels using the National Longitudinal Survey of
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Youth 1997 (NLSY97) from American youths born between 1980-1984.

7.3 Conclusion

The main objective of this thesis was to develop a Zero inflated dynamic panel

ordered probit models with both correlated and uncorrelated error terms and compare

them with Dynamic panel ordered probit model. The Akaike information criteria and

deviance information criteria from the simulation studies showed that ZIDPOPC model

provided a better than ZIDPOPI and DPOP models while ZIDPOPI model provided a

better than DPOP model. This results are similar to Harris and Zhao (2007) and Gurmu

and Dagne (2009) based on non-dynamic versions of the same models. ZIDPOPI

and ZIDPOPC estimators had a smaller RMSE compared to DPOP estimators for

different values of n. This showed that ZIDPOPC and ZIDPOPI estimators were more

accurate than DPOP estimators. The estimates of the ZIDPOPI and ZIDPOPC models

tended to the parameter values as n tend to infinity. This indicated that ZIDPOPI

and ZIDPOPC models produced consistent estimators. The study also concluded

that the state dependence should not be ignored since both participation decision

and consumption levels were characterized by substantial positive state dependence.

Christelis and Galdeano (2009) also found a statistically significant and economically

relevant estimate of true state dependence in most European countries.

The existence of state dependence implies that short-term policy interventions

established to reduce participation and consumption levels may have longer-term

implications. The estimated parameter for the first period participation observations

were statistically significant at 1%, which implied a positive association between the

first period participation observation and latent participation observation. Similarly,

the estimated parameter for first period consumption observations were statistically

significant at 1%, which implied a positive association between the first period

consumption observation and latent consumption observation. This implied that it is

essential to control for participation decision and consumption levels at the beginning

of the observations.

For classical approach, the correlation between the unobserved individual effects in
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ZIDPOPC model was not significant at 5% implying that the factors affecting the

participation decision are not the same as the one affecting the consumption levels. The

variance of the individual effects in participation decision was 0.771. This indicated

that 37.28% of the latent error variance was associated with the individual effects, as

evaluated by the intra-unit correlation coefficient in smoking decision. The variance of

the individual effects for the decision on consumption levels was 0.674. This indicated

that 31.24% of the latent error variance was associated with the individual effects, as

evaluated by the intra-unit correlation coefficient at consumption levels.

For Bayesian approach, the variance of the individual effects in participation decision

was 0.938. This indicated that 46.80% of the latent error variance was associated

with the individual effects, as evaluated by the intra-unit correlation coefficient

in smoking decision. The variance of the individual effects for the decision on

consumption levels was 0.924. This indicated that 46.06% of the latent error variance

was associated with the individual effects, as evaluated by the intra-unit correlation

coefficient at consumption levels. There was a moderate correlation (0.470) between

the unobserved individual effects in ZIDPOPC model, this implied that the factors

affecting the individual effects in participation decision were same as the one affecting

the unobserved individual effects at consumption levels.

The Akaike information criteria from the smoking data in maximum likelihood

estimation showed that ZIDPOPC model provided a better than ZIDPOPI and

DPOP models while ZIDPOPI model provided a better than DPOP model. In

case of ZIDPOPC model, state dependence, race and initial observation from the

participation decision were significant at 5% while state dependence, age, gender,

initial observation, correlation between individual effects and the first cut point from

consumption level were significant at 5%. The main causes of persistence of decision

to smoke were state dependence, unobserved heterogeneity, initial observations and

race. Age, education and gender do not influence the decision to smoke or not among

the young youth. This is similar to Contoyannis et al. (2004) who pointed out that

the explanatory power of majority of the covariates vanishes if state dependence and
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individual effects are controlled for. Therefore, state dependence and individual effects

should be a major focus to policymakers who have a smoking participation as an

objective.

The main causes of persistence for consumption levels were state dependence,

unobserved heterogeneity, age and gender. Educational level do not influence the

consumption levels among the young youth. On average, age has a negative impact

at zero consumption but a positive impact, particularly at higher percentiles, on

probability of cigarette consumption as the intensity of smoking increases. This results

are similar to Gurmu and Dagne (2009). This may be attributed to addictive behavior

as one gets older. The impacts in Gurmu and Dagne (2009) are overestimated due to

overlooking of state dependence in their model. Again, this is similar to Contoyannis

et al. (2004) who pointed out that the explanatory power of majority of the covariates

vanish if state dependence and individual effects are controlled for. Therefore, state

dependence and individual effects should be a major focus to policymakers who have

a smoking participation as an objective.

The state dependence in participation and consumption levels of cigarettes are

characterized by substantial positive state dependence. This implied that short-term

policy interventions designed to reduce participation in smoking and consumption

levels of cigarettes may have longer-term implications.The variance of individaual

effects in participation was 0.998. This indicated that 49.90% of the latent error

variance is associated with unobserved heterogeneity, as evaluated by the intra-unit

correlation coefficient in smoking decision. The variance of individual effects for

consumption levels was 0.954. Approximately 47.65% of the latent error variance is

associated with unobserved heterogeneity, as evaluated by the intra-unit correlation

coefficient at consumption levels.

The correlation coefficient between the errors was not signficant at 5%. This implied

that the variables affecting the participation are different from the one affecting

consumption levels. The correlation coefficient between the individual effects was

significant at 1%. This implied that the variables affecting the individual effects at
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participation were the same as the one affecting individual effects at consumption

levels. Estimated coefficients for initial period smoking observations were significant

at 1%, for both smoking decision and consumption levels, which implied a positive

correlation between the initial period smoking observation and unobserved latent

smoking. Therefore, this indicates that it is essential to control for the reported smoking

at the beginning of the observations.

The estimated parameters for first period smoking decision was significant at 1%,

which implies a positive association between the first period smoking observation and

latent smoking observation. Hence, it is important to control for smoking decision

at the beginning of observations. The estimated parameters for first period decision

on the number of cigarettes smoked observation was significant at 1%, the decision

on consumption levels, which implied a positive association between the first period

consumption levels observation and latent consumption levels. Hence, it is important

to control for the reported smoking at the beginning of the observations.

The Deviance information criteria from the smoking data in Bayesian approach

showed that ZIDPOPI model provided a better than ZIDPOPC and DPOP models

while ZIDPOPC model provided a better than DPOP model. This is due to the

weak correlation between the error terms in participation and consumption levels of

cigarettes. The state dependence in participation and consumption levels of cigarettes

are depicted by considerable positive state dependence. This implied that short-term

policy interventions designed to reduce participation in smoking and consumption

levels of cigarettes may have longer-term implications.

The variance of individual effects for participation was 0.986. This indicated that

49.30% of the latent error variance was associated with the individual effects, as

evaluated by the intra-unit correlation coefficient in smoking decision. The variance

of individual effects for consumption levels was 0.976. This indicated that 48.79% of

the latent error variance was associated with the individual effects, as evaluated by the

intra-unit correlation coefficient at consumption levels.

There was a weak correlation coefficient of 0.116 between the error terms. This



122

implied that the variables affecting the participation are different from the one affecting

consumption levels. There was a moderate correlation coefficient of 0.468 between

the individual effects. This implied that the variables affecting the individual effects

at participation were the same as the one affecting individual effects at consumption

levels.

Since the Zero inflated dynamic panel ordered probit model with independent and

correlated error terms provided a better than Dynamic panel ordered probit model in

both classical and Bayesian approaches, they are recommended for use in practice.

7.4 Recommendations for Future Research

This study considered the Zero inflated dynamic panel ordered probit model in a

balanced panel model and in absence of attrition. In real life, some respondent may

drop out of the study due to a variety of reason such as death or relocating to a

different country. Some respondent may not be available at the beginning of the study

but are likely to join the study later. This results to an unbalanced panel model where

some respondent are not observed for all the period. This study can be extended to

an unbalanced panel model and assume presence of attrition. The models can also be

extended to handle missing values.
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APPENDIX

I Second -Order Differentiations of the Log-Likelihood Function

The MLE for Θ can be availed by equating first derivatives to 0 and solving for Θ.

But the expressions can only be solved by an iterative method, for example by the

Newton-Raphson iterative method. To apply the Newton-Raphson method we require

the second derivatives expressions in the Hessian matrix and also require ∂πki
∂γ1

.
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The second derivatives are given by,
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The normal distribution with density f (x) (mean µ and standard deviation σ > 0) has

the following properties:

φ ′ (x) =−xφ (x)
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The second differentiation of (4.58) with respect to θ is given by,
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The second differentiation of (4.58) with respect to d1 is given by,
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The second differentiation of (4.58) with respect to ψ is given by,
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The second differentiation of (4.58) with respect to d2 is given by,
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(8)

The second differentiation of (4.58) with respect to re is given by,
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The second differentiation of (4.58) with respect to r is given by,
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The second differentiation of (4.58) with respect to α1 is given by,
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The second derivative of equation (4.58) with respect to αk is given by,
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The second differentiation of (4.60) with respect to d1 is given by,
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The second differentiation of (4.60) with respect to ψ is given by,
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The second differentiation of (4.60) with respect to d2 is given by,
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The second differentiation of (4.60) with respect to re is given by,
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The second differentiation of (4.60) with respect to r is given by,
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The second differentiation of (4.60) with respect to α1 is given by,
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The second differentiation of (4.60) with respect to αk is given by,
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The second differentiation of (4.61) with respect to ψ is given by,
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The second differentiation of (4.61) with respect to d2 is given by,
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The second differentiation of (4.61) with respect to re is given by,
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The second differentiation of (4.61) with respect to r is given by,
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The second differentiation of (4.61) with respect to α1 is given by,
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The second differentiation of (4.61) with respect to αk is given by,
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The second differentiation of (4.62) with respect to d2 is given by,
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The second differentiation of (4.62) with respect to re is given by,
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The second differentiation of (4.62) with respect to r is given by,
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The second differentiation of (4.62) with respect to α1 is given by,
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The second differentiation of (4.62) with respect to αk is given by,
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The second differentiation of (4.65) with respect to re is given by,
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The second differentiation of (4.65) with respect to r is given by,
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The second differentiation of (4.65) with respect to α1 is given by,
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The second differentiation of (4.65) with respect toαk is given by,
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The second differentiation of (4.66) with respect to r is given by,
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+
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(36)

The second differentiation of (4.66) with respect to α1 is given by,
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−
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The second differentiation of (4.66) with respect to αk is given by,

∂ 2 log f
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−
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(38)

The second differentiation of (4.68) with respect to α1 is given by,
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The second differentiation of (4.68) with respect to αk is given by,
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=
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The second differentiation of (4.69) with respect to αk is given by,
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II Trace Plots and Densities for the Simulated Data

Figure 1: Trace Plots and Densities for the Simulated Data
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The trace plots and their densities are shown above. The diagnostic plots shows that

generally, MCMC chains had a sensible convergence irrespective of the complexity of

the model.
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III Autocorrelation Plot for Simulated Data

Figure 2: Autocorrelation Plot for Simulated Data
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Initial screening of autocorrelation plots indicated a high autocorrelations between

the generated values. After thinning, picked every 6th iteration after burning,

autocorrelation between samples were considerably low to provide the independent

samples to compute final statistics such as mean and standard errors.
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IV Trace Plots and Densities for the Smoking Data

Figure 3: Trace Plots and Densities for the Smoking Data
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The trace plots and their densities are shown above. The diagnostic plots shows that

generally, MCMC chains had a sensible convergence irrespective of the complexity of

the model.
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V Autocorrelation Plot for Smoking Data

Figure 4: Autocorrelation Plot for Smoking Data
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Initial screening of autocorrelation plots indicated a high autocorrelations between

the generated values. After thinning, picked every 6th iteration after burning,

autocorrelation between samples were considerably low to provide the independent

samples to compute final statistics such as mean and standard errors.
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