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ABSTRACT

Alcoholism is a serious problem in Kenya today and many adults are addicted to
alcohol. The harmful use of alcohol causes a large burden concerning diseases, so-
cial and economic problems to the society. Mass media campaigns against alcohol
act as sources of information to halt alcohol abuse and its potentially harmful ef-
fects. In this research, we developed deterministic models for alcohol abuse driven
by the light and heavy drinkers taking into consideration the influence of pre ex-
posure to mass media campaigns. Two models were developed, one with perfect
pre exposure campaigns where the campaigns were successful and the other with
imperfect pre exposure campaigns where the campaigns were not successful. The
two models were analyzed through the determination of the model’s steady states
and their respective stabilities analysis in terms of the alcohol abuse reproduction
numbers R0. The analysis shows that alcohol-free equilibrium (AFE) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1. Numerical simulations
were carried out and the sensitivity analysis of the model parameters was done
to determine where the campaigns should be targeted for effective control of the
abuse. The results from the simulations illustrated that increasing the rate of
treatment reduces the number of alcohol addicts in the community. The results
also showed that mass media campaign against alcohol consumption reduces al-
cohol abuse. From the study we conclude that if alcohol treatment is emphasized
and mass media campaign regulated then alcohol addiction will be reduced from
the community.



CHAPTER ONE: INTRODUCTION

1.1 Background

According to World Health Organization (2014), alcohol is a drug which is ad-

dictive and has been used by many people for centuries. When alcohol is abused

it causes harmful effects to the body and also causes social and economic prob-

lems in the society. Alcohol affects the body depending on the amount of alcohol

consumed, how often one drinks and sometimes the type of alcohol consumed.

If taken lightly it acts as a stimulant and when consumed in large quantities, it

can cause depression effects. The overdose causes insensitivity to pain, vomiting,

seizures, unconsciousness and even death.

Alcohol is absorbed into the body through the blood vessels which are in the walls

of the stomach and small intestine. Immediately after drinking alcohol, it moves

to the brain from the stomach where the action of the nerve cells is slowed after

the brain is affected. Alcohol absorbed in the stomach is approximately 20 per

cent and the other remaining is absorbed through the small intestines. Alcohol

moves to the liver through the bloodstream and the liver then clean alcohol from

the blood through metabolism, whereby it is converted to substances that are not

toxic. When alcohol is consumed in large amounts, the liver can not clean it all,

thus the excess is left in the body. This excess alcohol circulates in the body and

affects the body negatively. Thus the amount consumed directly affect the body

of the consumer, according to (World, 2006).

In the past 1000 years, a grain that is fermented, juice from fruits and also honey

are ingredients used to brew alcohol. Alcohol existed even in the past, for ex-

ample, in China around 7000 B.C. India between 3000 and 2000 B.C had alcohol

called sura made from rice, in 2700 B.C Babylonians worshipped wine goddess and

in Greece, a drink called mead was used. In South America, Andes region corn,

grapes or apples were used to make a variety of fermented beverages called chichi.

1
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In the 16th century, ’spirits’ (the type of alcohol) was largely used as medicine. In

Kenya, among all other abused substances, alcohol is leading. The most abused

types of alcohol are the traditional brew because it is cheap and easily available.

The next abused type is wine and spirits (NACADA, 2012).

When young adults are addicted to alcohol, the country has no future manpower

to develop the nation. Researchers like (Eshiwani, 1993) and (Khamasi and Mutia,

2007) points out that alcohol and other abused substances may drive irresponsible

behaviour among the youth. A study by (Pengpid and Peltzer, 2019) in Kenya

concluded that 6.7% of Kenyan adults are harmful alcohol users and 12.8% are

binge - drinkers. A report by (Kendagor et al., 2018) studied the prevalence of

Heavy Episodic Drinking (HED) in Kenya. The results showed that the prevalence

of HED was 12.6%. They also found out that the highest proportion of HED was

in the 18-29 years age group at 35.5%.

A research by (Hornik et al., 2002), concluded that if alcohol is abused at an early

age, this may continue even to adulthood which will affect the production of the

affected in their professions and careers and even their families. Most alcoholic

people started as light or occasional drinkers and later developed to full time or

become dependent on alcohol. Many family and marriage problems arise from

abusing alcohol.

Mass media is any means of transmission of information to reach as many peo-

ple as possible. Mass media include broadcast media that uses videos and music

from radio or television. Then there is also digital media that involves online

and mobile mass communication from the internet. Examples of digital media

include email, social media sites like Facebook, Instagram, Whatsapp, Twitter

and Myspace. Outdoor media is also another form of mass media. These include

AR-advertising, billboards in towns and on the roadsides, flying billboards mostly

across major roads and placards. Another type of mass media is print media which
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include physical objects like books, comics, magazine, newspaper or pamphlets.

Young people mostly learn about alcohol from television, radio, film and popu-

lar music which acts as the main influence of the drinking problems according to

(Grube, 2004). Many companies concentrate on alcohol advertising to increase

sales. For example, in the 2000 year, the beverage industries spent 42 billion dol-

lars of advertising alcohol in the United States of America. Whether young people

are deliberately targeted by alcohol advertisers or not they are exposed to alcohol

advertising on television, in print media, and on the radio. It is possible that

advertising is important during initiation than during the addicted time. Analysis

of data from 1970 to 1995 from 20 countries shows that banning alcohol adverts

partially and completely might reduce alcohol abuse among the youth, (Saffer and

Dave, 2002).

Alcohol marketing was found to increase the onset of binge drinking according

to (De Bruijn, 2014). They studied the effects of alcohol marketing on adoles-

cence in Kenya, Malawi, Nambia and Zambia. Kenya was the only country with

legislation on alcohol consumption (Gazette, 2010), but did not seem to protect

young people against large volumes of alcohol advertisement (De Bruijn, 2014).

Studies show that 55.6% of the respondents are aware of alcohol adverts through

television with 53.5% of them admitting that alcohol adverts attract them to drink

(Anyange, 2014).

According to (Snyder et al., 2006), youth who saw more alcohol advertisements on

average drank more (each additional advertisement seen increased the number of

drinks consumed by one per cent). Youth in markets with greater alcohol adver-

tising expenditures drank more (each additional dollar spent per capital raised the

number of drinks consumed by 3 per cent). This shows that alcohol advertisement

has an impact on alcohol consumption among the youth.
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Internet users in Kenya by June 2016 were 21.6 million people which represent

53.3 per cent of people with internet access and 68.4 per cent data internet pen-

etration. Kenya is ranked third at 9.4 per cent of the internet users in Africa

according to the (Authority, 2014). By March 2019, the internet user in Kenya

rose to 43.3 million with 83 % internet penetration,(Group, 2019). Social media

sites are launched to cater to specific market needs and demands. The oldest

social media site is My Space, which emphasis on music sharing, popular in the

year 2000. Facebook was started in 2004, only available to Harvard University

students but spread to other colleges and it was available to the public in 2006,

(Moreno and Whitehill, 2014). Worldwide, 1.71 billion people are an active user

of Facebook monthly which is about seventeen per cent increase. Facebook has

approximately five million active users in Kenya and is growing.

Twitter emerged in 2006 and it uses short text messages with links to online and

pictures with up to 140 characters called tweets. By 2012, Twitter had five million

users worldwide who generate about three hundred forty tweets daily, according

to (Huo and Wang, 2016) and (Dubey et al., 2016). These tweets may influence

alcohol consumption if they target that. Instagram is used to share photos online.

This site allows its user to upload and share photos with their friends who are

following them in the same site. Linked In and YouTube are also social media

sites but have less influence on alcohol consumption.

Social media is very important in people’s lives because it affects the way they

think and what they do. Social media is full of advertisements for alcohol and

other drugs. Even restaurants and hotels use social media to promote alcohol and

drinking special hours. It is in social media where people advertise parties, get-

together and outings. According to (Vilage, 2017), research carried out by CASA

Columbia at Columbia University in 2011, shows that American teens who use

social media more at any time are more likely to smoke, drink alcohol and abuse

drugs.
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There is evidence that alcohol abuse spread like an infectious disease according to

(Lenhart and Madden, 2007) and (Misra et al., 2011), hence can be formulated as

a mathematical model. So far, few mathematical studies have been undertaken on

the effects of mass media campaigns against alcohol abuse. Therefore, this study

intends to develop and analyze mathematical models to look at alcohol abuse with

the influence of treatment and mass media campaigns. Mathematical models help

us to understand the extent of alcohol abuse with the effect of mass media and

the impact of the intervention (rehabilitation). In Kenya, no mathematical model

on the effect of treatment of alcohol and mass media campaign on alcohol abuse

has been developed and the research is primarily designed to fill the gap.

1.2 Statement of the Problem

Alcohol abuse is one of the leading causes of diseases and deaths in youth and

adults throughout the world. There are reports in Kenya of young people whose

lives are destroyed because of alcohol, (NACADA, 2012). Young people mostly

students are more likely to abuse alcohol because of peer pressure, media influ-

ence and lack of proper guidance, according to (?). The growth of mass media

campaigns on alcohol consumption has a great influence on alcohol abuse hence

there is a need to address the drinking problem.

According to (NACADA, 2010), alcohol abuse in central Kenya is a major prob-

lem. About two-thirds of the population consumes a high level of alcohol in the

region. Consumption was estimated to be 18% and nearly 60% consumed alcohol

before noon in central Kenya. They recommended enhanced enforcement of the

Alcoholic Drinks Control Act, 2010 (Gazette, 2010) among other recommenda-

tions.
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1.3 Justification of the Study

Thirty per cent of Kenyans aged between 15 and 65 years have ever drunk alcohol

at some point in their life. 13.3 per cent of Kenyans are addicted to alcohol, which

is about four million people according to (NACADA, 2012). When alcohol is taken

in large quantities, it may cause death. Alcohol is estimated to cause 1.8 million

fatalities every year worldwide. According to the latest survey by (Barometer,

2015), 89 per cent of people in Kenya use the internet for social media purposes

with Facebook, Twitter, and Instagram leading. The same survey reviewed that

71 per cent of people in Kenya go online to post comments on social sites. There is

zero per cent online use for 65 years and above, 64 per cent for below 25 years and

below and 49 per cent for between 25 and 34 years. Studies conducted recently

in the U.S.A shown that seventy-five per cent of teenagers who saw photos on

social media of others drinking influenced them to do the same. A University of

Nairobi student Selpher Cheloti did a study on Nairobi County secondary schools

and showed that one out of the causes of alcohol and drug abuse was peer pressure

at 84 per cent, (Cheloti et al., 2014). Thus alcohol abuse is a major concern in

this country, hence the need to seek remedies.

1.4 General Objective

This research aims to develop a deterministic mathematical model describing the

dynamics of alcohol abuse in the presence of mass media campaign and treatment

of alcoholism (rehabilitation) in Kenya.

1.4.1 Specific Objectives

Specific objectives are:

i. Formulate model 1 on the impact of treatment on alcohol abuse incorporating

mass media campaigns.

ii. Formulate model 2 on the effects of a targeted mass media campaign on alcohol

abuse in Kenya.
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iii. Establish the existence, stabilities of the equilibrium points and sensitivity

analysis of each model.

iv. Determine the effects of mass media campaigns on alcohol abuse in Kenya

v. Determine the impact of the intervention (rehabilitation) in Kenya.

vi. Fit data from Kenya rehabilitation centres in the developed model using Mat-

lab software to predict the impact of rehabilitation on alcoholism in Kenya.

1.5 Significance of the Study

The purpose of this research is to develop a deterministic model that illustrates

the effects of treatment and mass media campaigns on alcoholism among the adult

population in Kenya. Through this study, an understanding of the dynamics of

alcohol abuse in the country is discussed. This study will thus help the health

sector to know how the trends of alcohol abuse are, qualifying the potential effects

of treating alcohol addicts, quantifying the potential impact, expanding the re-

habilitation centres and emphasizing the data to be collected for future research.

This study will also help the government regulate the media campaigns by pro-

moting the campaign that shows the negative effects of alcohol and discourages

the campaigns that encourage alcohol use.



CHAPTER TWO: LITERATURE REVIEW

2.1 Literature Review

A study by (Sánchez et al., 2007), studied drinking alcohol as an acquired state

because of high contacts or intense interaction with the drinking classes. The

purpose of their study was to identify mechanisms that influence and affect the

population to start drinking or be initiated to the drinking classes. They divided

the population into three classes which include susceptible, problem drinkers and

temporarily recovered individuals. They concluded that a high relapse rate will

be present when treatment has short-lived positive effects and that drinking be-

haviour is a result of the movement of susceptible to the drinker and recovered to

the drinker. Results also showed that the sudden growth of the number of drinkers

was possibly caused by a large number of individuals joining the problem drinking

class and that it was more effective to control the average time the susceptible

spends in the drinking environment.

Research by (Manthey et al., 2008), considered the college population which was

divided into three groups depending on their drinking patterns. These groups

were non-drinkers (N), social drinkers (S) and problem drinkers (P ). They mod-

elled drinking as a disease that spread depending on their social interactions.

They assumed that problem drinkers could recruit both non-drinkers and social

drinkers. They used systems of differential equations to develop a SIS model.

Their analysis revealed that recruitment plays an important role in the pattern of

campus drinking. According to their research, the reproduction number does not

fully determine the dynamics of college drinking. They emphasized that campus

drinking may be reduced by minimizing the recruitment of the non-drinkers by

the problem drinkers. This could be attained by reducing the social interaction of

students to heavy drinking environment which facilitates rapid progression from

the non-drinking to the problem drinking class.

8
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Bhunu (2012), studied the dynamics of alcoholism in a community taking into ac-

count that some people voluntarily quit alcohol consumption and some as a result

of being on treatment. The model subdivided the human population into four

classes which include S- those who do not consume alcohol and never consumed

it, D- alcohol consumer but not become alcohol dependent A- alcohol consumers

and independent on alcohol and R- those recovered with or without treatment.

Analysis of the reproduction number showed conditions (which included who is

encouraged to quit alcohol, either S, D or R) under which supporting the encour-

agement of moderate drinkers to quit alcohol consumption leads to a decrease in

alcoholism better than alcoholics only quitting and vice versa. They used Center

Manifold Theory to analyze the equilibrium point which shown that the equilib-

rium point is locally asymptotically stable when the reproduction number is less

than unity. Numerical simulations were performed to illustrate various scenarios.

The results from numerical simulation show that, in the long term, encouraging

and supporting more moderate drinkers to quit alcoholic consumption will achieve

a better result than supporting and encouraging alcoholics only to quit.

A research by (Walters et al., 2013), developed a three-stage model and represented

the effect of social influence on drinking habits. Their main interest was the total

recovery of individuals in the treatment class. They divided the population into

three groups namely; susceptible (S) who do not consume alcohol, individuals with

alcohol problem (A) and individuals in treatment (R). They assumed alcoholism

develop due to social interaction with the individuals with an alcohol problem.

Individuals in the treatment class may relapse back to A class or stay in the

treatment class until they are completely recovered and go back to the susceptible

class S. They used the stability analysis to calculate the reproduction number R0,

which when it exceeded one, alcohol persists in the population and when it is less

than one the alcohol problem will die out with time. They concluded that β (rate

of susceptible developing alcohol problem), which was based on contact with the

drinking class, had a great influence on R0. A decrease in β causes R0 to decrease



10

and increasing β will increase R0, hence to reduce alcohol problem in the popula-

tion it is important to prevent susceptible from entering the alcohol problem class.

Sharma and Samanta (2013), developed a mathematical model for alcohol abuse

and used four compartments which include S- susceptible who are moderate and

occasional drinkers, D- heavy drinkers, T - drinkers in treatment and R- tem-

porarily recovered drinkers. They found that the basic reproduction number of

the model system is

R0 = β1

µ+ δ1 + φ
.

Where β1 is the transmission coefficient from S class to the D class, µ is the

natural death rate, δ1 is death due to alcohol abuse and φ is the rate of getting

treatment. Sensitivity analysis of R0 identified β1 as and as the parameter to

be targeted for the reduction of R0. Sensitivity analysis showed that it is more

effective to control how the drinking spreads than to increase the number in the

treatment class. They used numerical simulation to verify disease-free equilibrium

E0 is stable when R0 < 1 and when R0 > 1 endemic equilibrium E∗ becomes

stable and disease-free equilibrium become unstable then forward bifurcation oc-

curs. The backward bifurcation occurs when the other endemic equilibrium E1 is

unstable.

Researchers (Bani et al., 2013), modelled the environmental factors concerning al-

cohol drinking patterns in college. Their model considered the social factors that

mostly influence alcohol drinking patterns and the strategies that would reduce

the social interaction of serious drinkers patterns so that the population of heavy

drinkers can be reduced. They divided the college population into light drinkers,

moderate drinkers, and heavy drinkers. They captured two drinking environments

defined as low and high-risk environments. The moderate drinkers were divided

into two classes based on the 2 distinct drinking environments. They concluded

that the success of intervention programs to reduce the heavy drinking in college

depended on the availability of resources and the people’s ability to identify where
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and how much to intervene. Analyzing the model mathematically suggested that

heavy drinking can be reduced if the drinking reproduction number which depends

on social and environmental factors is brought below one. Uncertainty and sen-

sitivity analysis was carried out on the metric representing time to eradicate the

high-risk drinkers in the presence of treatment which provided a direct measure of

the success of the intervention programs. This measure showed that time to erad-

ication of high-risk drinkers decreases with an increase in the level of intervention

meant to reduce the rate of recruitment of new alcohol drinkers.

A research by (Ma et al., 2015), analyzed the impact of awareness programs a

time delays on alcohol consumption behaviour. They divided the human popula-

tion into three classes; S(t)- individuals who drink moderately or do not drink,

A(t)- heavy drinkers and X(t)- population aware of the risk of drinking and do

not drink alcohol. They also included the media class M(t) which represented the

cumulative density of the awareness programs that are driven by the media. They

concluded that awareness programs reduce the population in the heavy drinking

class. The time delays showed that for a lower value of time delay parameter τ ,

the system was stable but when the parameter had a higher value then the system

could lose its stability. They analyzed the conditions for the existence of trans-

critical and Hopf bifurcation using τ as the bifurcation parameter. and the study

suggested that the equilibrium of the system was locally asymptotically stable for

τ ∈ [0, τ0] and unstable for τ > τ0.

Huo and Wang (2016), constructed a model of binge drinking with the media

coverage influence and did not consider recruitment and death. They divided the

population N into n groups (n is the maximum degree) depending on the degree of

the nodes and divided these groups into three classes depending on how they take

or use alcohol. They developed a binge drinking model considering the media using

mean-field theory. After analysis, they showed that the equilibrium points E0 and

E∗ (representing Alcohol-Free Equilibrium and Unique Alcohol Equilibrium), are
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all globally asymptotically stable. Alcohol abuse will disappear if the reproduction

number is less than one and persist if the reproduction is greater than one. Net-

work heterogeneity made drinking behaviour to spread faster hence they concluded

that mixing freely makes drinking behaviour spread easily and media coverage is

the best way to reduce alcohol problems though it does not change how it spreads.

Studies by (Dubey et al., 2016), presented a SIR model and studied the impact of

2 important parameters: awareness programs and treatment on the spread of an

infectious disease. They divided the population into, S - Susceptible population,

I -Infective population and R - Recovery population. Then they assumed that a

part of the S class forms another class called susceptible awareness population,

Sa. This class develops due to awareness programs by social/electronic media

density M at any time t. They concluded that there exist only two equilibrium

points: DFE (total elimination of the infection) I = 0 and EEP (disease will

persist). The analysis showed that DFE was locally asymptotically stable when

the reproduction number was less than one and endemic equilibrium existed when

the reproduction number was greater than one and was globally asymptotically

stable. The numerical simulation revealed that the infected population decrease

as they increased the media awareness rate, β. They also showed that if the media

dissemination was not available in the population then infection increased which

was further reduced by treatment.

Huo and Zhang (2016), developed a model that involved positive and negative role

of Twitter on alcoholism. They divided the total population into 4 compartments:

Those who drink moderately, light drinkers, heavy drinkers, and quitters. These

people may use their Twitter accounts at any time and comment about their drink-

ing. They carried out the sensitivity analysis of the basic reproduction number R0

and heavy drinkers. The parameters that are related to Twitters appear in basic

reproduction numbers. They analyzed R0, considering when the positive tweets

(information discouraging alcoholism) are less than the negative ones (information
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encouraging alcoholism) or when the positive tweets are more than the negative

tweets. They concluded that if the number of positive tweets is increased or if

the number of negative tweets is decreased would help reduce alcohol abuse. Also

controlling the number of tweets by the moderate drinkers would reduce alcohol

consumption. Positive and negative tweets played an important role in the model,

although positive tweets played a more vital role than negative tweets.

Our study is developed to improve the study of (Huo and Zhang, 2016) They

studied alcoholism with the influence of Twitter. They did not consider other

mass media campaigns and treatment of alcohol abuse. There is no mathematical

model of the influence of mass media on alcohol abuse in Kenya. This study

intends to fill that gap by developing and analyzing a mathematical model of

treatment of alcohol abuse incorporating mass media campaign. This study will

help us to understand the extent of alcohol abuse with the effect of mass media

and the impact of the intervention (rehabilitation).



CHAPTER THREE: FORMULATION AND ANALYSIS OF THE

MODELS

3.1 Model 1

Our research involves a mathematical modelling approach where alcohol abuse is

modelled as a socially contagious disease, hence we can use theories of disease

modelling to formulate models of alcohol abuse. Model 1 is a perfect pre-exposure

campaign model where the campaign against alcohol abuse is effective.

3.1.1 Model Formulation

In this section, we consider model assumptions, model description, model flow

chart and model equations.

3.1.2 Models Assumptions

The assumptions of model 1 are:

i. There is exposure to media campaign against alcohol consumption before

initiation to alcohol, which implies that only the susceptible are influenced by

mass media campaigns.

ii. There is homogeneous mixing of the population in Kenya and individuals

become alcoholic after contact with an individual in the light drinking class

and heavy drinking class.

iii. Alcohol becomes a problem when the individuals move to the heavy drinking

class but there is no problem when they are in the light drinking class.

iv. When individuals are exposed to the media campaign, they do not get into

drinking habits but go back to susceptible class.

v. The growth of awareness programs is assumed to be proportional to the num-

ber of heavy drinkers.

14



15

vi. When the individuals relapse, they move to the heavy drinking class.

3.1.3 Model Description

We will have six human compartments and one media compartment where we

consider the adult population only. These classes are S - Susceptible who have

never used alcohol in their life, Sa - individuals exposed to media campaign and

have never used alcohol, L - Light drinkers who drink two to three drinks one or

two times a week, H - Heavy drinkers who are dependent on alcohol, T - indi-

viduals under treatment or in the rehabilitation centres and Q -individuals who

have stopped drinking permanently. The media compartment M - is the density

of media campaign against alcohol consumption. The progression from one class

to another will be formulated into seven nonlinear ordinary differential equations

as shown in Figure 3.1. We will use data for simulation from rehabilitation centres

in Kenya.

Individuals are recruited into the model at a rate of Λ. Individuals are initiated

to alcohol drinking due to contact with the light drinkers at a rate of λ where λ is

given by β(L+η1H) and β is the effective contact rate of light and heavy drinkers

with the non-drinking classes and η1 is the rate of the heavy drinkers contacting

the susceptible which is always less than the rate of contact of the light drinkers

with the susceptible. Hence η1 is always less than one. The rate of dissemination

of media awareness to the susceptible is βm. The human population die due to

natural causes at a rate µ and they die due to alcohol-related causes at a rate

δ. The rate of increase of alcohol intake from a few drinks a week to dependence

to alcohol is α1 and light drinkers quit drinking at a rate of α2. The rate at

which heavy drinkers seek treatment or go to rehabilitation centres for treatment

is σ1 and the rate at which heavy drinkers quit drinking without treatment is σ2.

The effective treatment rate of the heavy drinking class is τ2, which partly due to

media awareness programs. The rate of relapse after rehabilitation back to heavy

drinking is τ1. The rate of the media awareness campaign on the light drinkers
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is represented by θ1 and θ2 represents the rate of media awareness programs of

the heavy drinking classes which will increase the rate of joining the treatment

class. The depletion (depreciation) of the media campaigns due to ineffectiveness

of the programs or other factors is represented by ρ. The rate of effective media

campaigns against alcohol is denoted by ω. Table 3.1 gives the variables and

Table 3.2 gives the summary of the parameters and their description used in our

research.

Table 3.1: Definition of Variables

Variables Definitions

S Susceptible who have never drunk alcohol

Sa Susceptible who are pre-exposed to effects of alcohol abuse

L Light drinkers who drink about five drinks, two or three times a week

H Heavy drinkers who drink daily and dependent on alcohol

T Individuals on rehabilitation and not exposed to alcohol

Q Individuals who completely quit alcohol and leave the model

M Awareness programs are driven by mass media
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Table 3.2: Parameters and their Description

Parameter Description

Λ Recruitment rate of drinkers into population

µ Natural death rate

λ Contact rate of susceptible with the light drinkers

β Effective contact rate

βm Rate of dissemination of media awareness of the susceptible

α1 Transfer rate of light drinkers to heavy drinkers

α2 Rate of quitting alcohol of the light drinkers

σ1 Treatment rate of the heavy drinkers (rate of joining rehabilitation)

σ2 Rate of heavy drinkers quitting the drink

τ2 Rate of effective treatment

τ1 Rate of relapse back to heavy drinking from rehabilitation

δ Death rate due to alcohol abuse

θ1 Rate of awareness programs being implemented on the light drinkers

θ2 Rate of awareness programs being implemented on the heavy drinkers

ρ Rate of depletion of media programs

ω Rate of effective (successful) media campaign

η1 Modification Parameter
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3.1.3.1 Model Flow Charts and Equations of Model 1

From Figure 3.1, we get the following differential equations.

dS

dt
= Λ + ωSa − βmSM − (λ+ µ)S,

dSa
dt

= βmSM − (µ+ ω)Sa,
dL

dt
= λS − (µ+ α1 + α2)L,

dH

dt
= α1L+ τ1T − (σ1 + µ+ σ2 + δ)H,

dT

dt
= σ1H − (µ+ τ2 + τ1)T,

dQ

dt
= τ2T + σ2H + α2L− µQ,

dM

dt
= θ1L+ θ2H − ρM.



(3.1)
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We let k1 = µ+α1+α2, k2=µ+σ1+σ2+δ, k3=µ+τ1+τ2 and

λ = β(L+ η1H) (3.2)

3.1.4 Model Analysis

In this section, we analyze model 1 where the analysis include; invariant region,

the positivity of the model, reproduction number of the alcohol abuse, alcohol-free

equilibrium(AFE), local and global stability of AFE, endemic equilibrium point

and the bifurcation of the model.

3.1.5 Invariant Region and Positivity

To investigate the region where the solutions of the model are feasible, we first

add all the human compartments to get the total population N where N = S +

Sa + L + H + T + Q. Taking the time derivatives of our total population along

the solution path gives:

dN

dt
= dS

dt
+ dSa

dt
+ dL

dt
+ dH

dt
+ dT

dt
+ dQ

dt
,

dN

dt
= Λ− µN − δH.

 (3.3)

Equation (3.3) can also be written as:

dN

dt
≤ Λ− µN. (3.4)

Integrating the linear differential equation (3.4) with respect to time, using the

integrating factor eut we obtain,

Neµt ≤ Λ
µ
eµt + ec. (3.5)

This is simplified to,

N ≤ Λ
µ

+ C

eµt
, N ≤ Λ

µ
+ Ce−µt, (3.6)
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where C = ec is a constant of integration. As t tends to infinity, the limit of N(t)

becomes

lim
t→∞

N(t) ≤ Λ
µ
. (3.7)

From equation (3.7), it is clear that N(t) is bounded and

0 < N(t) ≤ Λ
µ
. (3.8)

We conclude that the feasible solutions set of the system equation enters and

remains in the region Ω for all future time, where the region Ω is given by:

Ω =
{(
S, Sa, L,H, T,Q

)
∈ R6

+ | 0 < N(t) ≤ Λ
µ

}
. (3.9)

Therefore from equation (3.9), the model is well posed and we can study the dy-

namics of the model in Ω.

The positivity of the model is calculated by first assuming that the initial condi-

tion are: S(0) > 0, Sa(0) > 0, L(0) > 0, H(0) > 0, T (0) > 0, Q(0) > 0,M(0) > 0.

Using comparison theory and letting k1 = α1 + α2 + µ, k2 = σ1 + σ2 + µ+ δ, k3 =

τ1 + τ2 + µ, we get from the last equation of (3.1);

dM

dt
= θ1L+ θ2H − ρM,

dM

dt
≥ −ρM. (3.10)

Separating the variables we obtain,

dM

M
≥ −ρ dt. (3.11)

Integrating this equation (3.11) with respect to time t we obtain,

ln M(t) ≥ −ρ t+ C, (3.12)
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where C is a constant of integration. Introducing exponential both sides we obtain;

M(t) ≥ e−ρ+C . (3.13)

Substituting t = 0 and solving for C we get,

M(0) ≥ e0.eC , hence eC = M(0). (3.14)

Thus our solution now is

M(t) ≥M(0)e−ρt > 0. (3.15)

Equation (3.15) is positive for all time t. We do the same to the equation of Q,

dQ

dt
= τ2T + σ2H + α2L− µQ,

dQ

dt
≥ −µQ. (3.16)

Separating the variables and integrating equation (3.16), introducing exponential

and solving for t=0, we obtain,

Q(t) ≥ Q(0)e−µt > 0. (3.17)

Equation (3.17) is positive for all time t. The same applies to the differential

equation involving treatment (T),

dT

dt
= σ1H − k3T

dT

dt
≥ −k3T. (3.18)

Integrating equation (3.18) and solving as done in equation (3.10) we obtain;

Q(t) ≥ Q(0)e−k3t > 0. (3.19)

Equation (3.19) is also positive for all time t. This will apply to all other differential
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equation involving H,L, Sa and S. This is given in the equation (3.20) below.

dH

dt
≥ −k2H, H(t) ≥ H(0)e−k2t > 0

dL

dt
≥ −k1L, L(t) ≥ L(0)e−k1t > 0

dSa
dt
≥ −(µ+ ω)Sa, Sa(t) ≥ Sa(0)e−(µ+ω)t > 0

dS

dt
≥ −(λ1 + µ)S, S(t) ≥ S(0)e

∫
−(λ1+µ)dt > 0


(3.20)

Equation (3.20) show that S, Sa, L and H are always positive for all time t.

3.1.6 Alcohol Free Equilibrium(AFE) and Alcohol Reproduction Number

The AFE of the system (3.1) is obtained by setting all alcohol drinking classes

and media class to zero. This means L = H = T = Q = M = 0 which implies

that Sa = 0 hence;

S0 = Λ
µ
.

The AFE of the model is therefore given by:

E0 =
{
S0, S0

a, L
0, H0, T 0, Q0,M0

}
=
{Λ
µ
, 0, 0, 0, 0, 0, 0

}
. (3.21)

The reproduction number is the number of average secondary infections pro-

duced by an infectious individual in a susceptible population. In the case of alcohol

abuse model, R0 is the average number of secondary cases generated by one alco-

hol user over the alcoholic period. We use the next generation matrix method to

determine the alcohol abuse reproduction number R0, as used by (Castillo-

Chavez et al., 2002). Using the notation F to represent the new infection and V

to represent the transfer of infection in our model noting that S0 = Λ
µ
we obtain:

F =



Λβ
µ

Λβη1
µ

0

0 0 0

0 0 0


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V =



k1 0 0

−α1 k2 −τ1

0 −σ1 k3


The reproduction number of the model is the largest eigenvalue of the matrix

FV −1, where V −1 is the inverse of V . The matrix FV −1 is given by;

F.V −1 =



Λβ(k3(k2+α1η1)−σ1τ1)
µk1(k2k3−σ1τ1)

Λβη1
µk2k3−µσ1τ1

Λβη1τ1
µk2k3−µσ1τ1

0 0 0

0 0 0


.

The reproduction numberR0 is therefore given by:

R0 = βΛ(k3(k2 + η1α1)− σ1τ1)
µk1(k2k3 − σ1τ1) . (3.22)

The reproduction number can also be written as,

R0 = βΛ(k3η1α1 + k3k2 − σ1τ1)
µk1(k2k3 − σ1τ1)

Factoring out k2k3 in the numerator of the equation of R0, we obtain;

R0 =
βΛ(k3η1α1 + k3k2(1− σ1τ1

k2k3
))

µk1(k2k3 − σ1τ1)

Considering the fraction σ1τ1
k2k3

, where k2 = µ+ σ1 + σ2 + δ and k3 = µ+ τ1 + τ2, we

observe that this is a fraction less one. Further the fraction,

σ1

µ+ σ1 + σ2 + δ
, (3.23)
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represent the probability that an individual getting treatment and the fraction,

τ1

µ+ τ1 + τ2
, (3.24)

represent the probability that an individuals from treatment class relapsing back

to the heavy drinking class. Hence the product,

σ1τ1

(µ+ σ1 + σ2 + δ)(µ+ τ1 + τ2) , (3.25)

represent the probability that an individual will be in the treatment class. We can

also let
σ1τ1

(µ+ σ1 + σ2 + δ)(µ+ τ1 + τ2) = φ,

hence R0 now becomes,

R0 = Λ
µk1

(β(η1α1k3 + k2k3(1− φ))
k2k3(1− φ)

)
= Λ
µk1

(β(η1α1 + k2(1− φ))
k2(1− φ)

)
. (3.26)

From the equation (3.26), we conclude that,

R0 = Λ
µ

( β
k1

+ βη1α1

k1k2(1− φ)
)
, (3.27)

where

RL = Λβ
µk1

represents the reproduction number of light drinking class L and

RH = Λβα1η1

µk1k2(1− φ) ,

represents the reproduction number of the heavy drinking class H.
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3.1.7 Local and Global Stability of AFE

Theorem 1. The AFE point (E0) is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

Proof. To prove the theorem we obtain the Jacobian matrix of the system (3.1)

at the AFE E0.

JE0 =



−µ ω −Λβ
µ

−Λβη1
µ

0 0 −βmΛ
µ

0 −(µ+ ω) 0 0 0 0 βmΛ
µ

0 0 Λβ
µ
− k1

Λβη1
µ

0 0 0

0 0 α1 −k2 τ1 0 0

0 0 0 σ1 −k3 0 0

0 0 0 α2 σ2 −µ 0

0 0 θ1 θ2 0 0 −ρ



From the Jacobian matrix, it can be seen that the first three eigenvalues are;

−µ,−(ω + µ) and− ρ. The other eigenvalues are evaluated from the reduced

matrix below.



βΛ
µ
− k1

Λβη1
µ

0

α1 −k2 τ1

0 σ1 −k3



The characteristic polynomial of the matrix JE0 given by;

λ3
1 + P1λ

2
1 + P2λ1 + P3 = 0. (3.28)
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where,

P1 =− βΛ
µ

+ k1 + k2 + k3,

P2 =− α1βη1Λ
µ

− βk2Λ
µ
− βk3Λ

µ
+ k1k2 + k3k2 + k1k3 − σ1τ1,

P3 =βΛσ1τ1

µ
− α1βη1k3Λ

µ
− βk2k3Λ

µ
− k1σ1τ1 + k1k2k3.

Simplifying P3 and writing it in terms of R0 we get:

P3 =k1(k2k3 − σ1τ1) + Λβ
µ

(−k3(k2 + α1η1) + σ1τ1),

P3 =k1(k2k3 − σ1τ1)− Λβk1

µk1(k2k3 − σ1τ1)(k3(k2 + α1η1)− σ1τ1)(k2k3 − σ1τ1),

P3 =k1(k2k3 − σ1τ1)
(
1− Λβ

µk1(k2k3 − σ1τ1)(k3(k2 + α1η1)− σ1τ1)
)
.

We know that from equation (3.23) that,

R0 = Λβ
µk1(k2k3 − σ1τ1)(k3(k2 + α1η1)− σ1τ1)

)
,

therefore

P3 = k1(1− φ)(1−R0).

We apply Routh - Hurwitz Criteria (Routh, 1877), where equation (3.28) should

have negative real root if and only if P1 > 0, P2 > 0, P3 > 0 and P1P2 > P3. In

our case P1 and P2 are positive. The product of P1P2 > 0 since both are

positive and if we choose R0 < 1, then P1P2 > P3. For P3 to be positive, 1 − R0

must be positive. This means that AFE point E0 is locally asymptotically stable

whenever R0 < 1.

Global stability of AFE of system (3.1) is investigated using the theorem by

(Castillo-Chavez and Song, 2004).
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Theorem 2. The fixed point Ũ0 = (X∗, 0) = (Λ
µ
, 0, 0, 0, 0, 0) is globally asymptot-

ically stable, if R0 < 1 is locally asymptotically stable and assumption (H1) and

(H2) are satisfied where the conditions (H1) and (H2) are;

(H1) for dX
dt

= F (X, 0), X0 is globally asymptotically stable.

(H2), G(X,Z) = AZ − G̃(X,Z), G̃(X,Z) ≥ 0 for (X,Z) ∈ R6
+ where A =

DZG(X, 0) is an M- matrix (the off diagonal element of A are non-negative) and

R6
+ is the region where the model makes biological sense. The equation (3.1)

is written as dX
dt

= F (X,Z), dZ
dt

= G(X,Z), where X = (S) represents the

alcohol free classes and Z = (L,H, T ) represents the alcohol drinking classes.

G(X, 0) = 0, Ũ0 = (X∗, 0) = (Λ
µ
, 0, 0, 0, 0, 0) denotes the AFE point of the model.

Proof. In this case, F (X, 0) = (Λ− µS), X = (S, Sa, Q) and Z = (L,H, T ).

A =



β − k1 βη1 0

α1 −k2 τ1

0 σ1 −k3


,

AZ =



(β − k1)L+ βη1H

α1L− k2H + τ1T

σ1H − k3T


,

G(X,Z) =



λS − k1L

α1L− k2H + τ1T

σ1H − k3T


,

G̃(X,Z) = AZ −G(X,Z)
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.

G̃(X,Z) =



β(L+ η1H)(1− S
N

)

0

0


.

Since S ≤ N, S
N
≤ 1, it is clear that G̃(X,Z) ≥ 0. It is also clear that X∗ =

(Λ
µ
, 0, 0) is g.a.s equilibrium of dX

dt
= F (X, 0). Hence the system (3.1) is globally

asymptotically stable.

3.1.8 Endemic Equilibrium Point (EEP)

To find conditions for the existence of an equilibrium for which alcohol abuse is

endemic in the population, the system (3.1) is solved in terms of force of infection

at steady state λ∗ , where λ∗ = β(L∗ + η1H
∗). Setting the right hand side of

equation (3.1) to zero and noting that λ = λ∗ at equilibrium gives:

S∗ =ξ5

S∗a =(Λ− µξ5) ((µ+ ω) (−β (η1 + ξ2) + βη + ξ1βm) + ξ3 (β(µ+ ω)− µβm))
βω (η1 + ξ2) (µ+ ω) + µξ3ωβm

L∗ = (µ+ ω) (Λ− µξ5)
ξ5 (β (η1 + ξ2) (µ+ ω) + µξ3βm)ξ2

H∗ = (µ+ ω) (Λ− µξ5)
ξ5 (β (η1 + ξ2) (µ+ ω) + µξ3βm)

T ∗ =ξ1
(µ+ ω) (Λ− µξ5)

ξ5 (β (η1 + ξ2) (µ+ ω) + µξ3βm)

Q =ξ4
(µ+ ω) (Λ− µξ5)

ξ5 (β (η1 + ξ2) (µ+ ω) + µξ3βm)

M∗ =ξ3
(µ+ ω) (Λ− µξ5)

ξ5 (β (η1 + ξ2) (µ+ ω) + µξ3βm)


(3.29)

where ξ1 = σ1
k3
, ξ2 = k2−ξ1τ1

α1
, ξ3 = θ1ξ2+θ2

ρ
, ξ4 = α2ξ2+ξ1τ2+σ2

µ
, ξ5 = k1ξ2

β(η1+ξ2) .

Writing equation of (3.23) in terms of β we obtain;

β = k1µR0 (1− φ)
Λ (α1η1k3 + k2k3 − σ1τ1) . (3.30)
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Solving for λ = β(L+ η1H), we obtain;

λ = k1µ (R0 − 1)R0(µ+ ω) (1− φ)
α1Bk3Λξ3 + k1R0(µ+ ω) (1− φ) .

Substituting the value of β into equation (3.29) we obtain:

S∗ = Λ
µR0

S∗a = α1βmk3Λ2ξ3 (R0 − 1)
µR0 (α1βmk3Λξ3 + k1R0(µ+ ω) (1− φ))

L∗ = Λ (R0 − 1) (µ+ ω) (1− φ)
α1βmk3Λξ3 + k1R0(µ+ ω) (1− φ)

H∗ = α1k3Λ (R0 − 1) (µ+ ω)
α1βmk3Λξ3 + k1R0(µ+ ω) (1− φ)

T ∗ = α1Λ (R0 − 1)σ1(µ+ ω)
α1βmk3Λξ3 + k1R0(µ+ ω) (1− φ)

Q∗ = α1k3Λξ4 (R0 − 1) (µ+ ω)
α1βmk3Λξ3 + k1R0(µ+ ω) (1− φ)

M∗ = α1k3Λξ3 (R0 − 1) (µ+ ω)
α1βmk3Λξ3 + k1R0(µ+ ω) (1− φ) .



(3.31)

From equation (3.31) we conclude that;

Theorem 3. Endemic equilibrium exist and is positive if R0 > 1.

3.1.9 Bifurcation of the Model

We use Center Manifold Theory to investigate the nature of the bifurcation. We

let S = x1, Sa = x2, L = x3, H = x4, T = x5, Q = x6,M = x7.

Equation (3.1) can be written as,
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dN
dt

= F (x) with F = (f1, f2, f3, f4, f5, f6, f7) and,

dx1

dt
= f1 = Λ + ωx2 − βmx1x7 − β(x3 + η1x4)x1 − µx1

dx2

dt
= f2 = βmx1x7 − µx2 − ωx2

dx3

dt
= f3 = β(x3 + η1x4)x1 − k1x4

dx4

dt
= f4 = α1x3 + τ1x4 − k2x4

dx5

dt
= f5 = σ1x4 − k3x5

dx6

dt
= f6 = τ2x5 + σ2x4 + α2x3 − µx6

dx7

dt
= f7 = θ1x3 + θ2x4 − ρx7



. (3.32)

By choosing β = β∗ as the bifurcation parameter and investigating the case when

R0 = 1 gives;

β∗ = µk1(1− φ)
Λ(k2k3 + k2α1η1 − σ1τ1

. (3.33)

It can be shown that the Jacobian of equation (3.1) at β = β∗ has a zero eigen-

value which is simple. To investigate the stability of equation (3.1), we use the

following model of (Castillo-Chavez and Song, 2004), Appendix A.

Eigenvectors of J(E0) = J∗β

The Jacobian of the model at β = β∗ denoted by Jβ∗ has a right eigenvector de-

noted by w = (w1, w2, w3, w4, w5, w6, w7)T given by:
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

−µ ω −g1 −g2 0 0 0

0 −g3 0 0 0 0 0

0 0 g1 − k1 g2 0 0 0

0 0 α1 −k2 τ1 0 0

0 0 0 σ1 −k3 0 0

0 0 α1 σ2 τ2 −µ 0

0 0 θ1 θ2 0 0 −ρ





w1

w2

w3

w4

w5

w6

w7



=



0

0

0

0

0

0

0



, (3.34)

where g1 = β∗Λ
µ
, g2 = β∗η−1Λ

µ
, g3 = −(µ+ ω). Equation (3.34) can also be writ-

ten as:

−µw1 + ωw2 − g1w3 − g2w4 = 0

−g3w2 = 0

(g1 − k1)w3 + g2w4 = 0

α1w3 − k2w4 + τ2w5 = 0

σ1w4 − k3w5 = 0

α1x3 + σ2x4 + τ2x5 − µx6 = 0

θ1x3 + θ2x4 − ρx7 = 0



. (3.35)
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After solving equation (3.35), we get:

w1 = −(g1w3 + g2w4)
µ

< 0

w2 = 0

w3 = g2w4

g1 − k1
> 0

w4 = k3w5

σ1
> 0

w5 = ω1w4

k3
> 0

w6 = α1x3 + σ2x4 + τ2x5

µ
> 0

w7 = θ1x3 + θ2x4

ρ
> 0



. (3.36)

The Jacobian matrix has a left eigenvector denoted v given by:



−µ 0 0 0 0 0 0

ω −g3 0 0 0 0 0

−g1 0 g1 − k1 α1 0 α1 θ1

−g2 0 α1 −k2 σ1 σ2 θ2

0 0 0 τ2 −k3 τ2 0

0 0 0 0 0 −µ 0

0 0 0 0 0 0 −ρ





v1

v2

v3

v4

v5

v6

v7



=



0

0

0

0

0

0

0



. (3.37)
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Solving equation (3.37), we obtain:

v1 =v2 = 0

v3 = α1v4

g1 − k1
> 0

v4 =k3v5

τ2
> 0

v5 =τ2v4

k3
> 0

v6 =0

v7 =0



. (3.38)

We find the sign of a and b as follows using the expression,

vkwiwj
d2fk
dxidxj

for k = 3; i, j = 1, 3, 4.

v3w1w1
d2f3

dx1dx1
=0

v3w1w3
d2f3

dx1dx3
=β∗v3w1w3 < 0

v3w3w1
d2f3

dx3dx1
=v3w3w1β

∗ < 0

v3w1w4
d2f3

dx1dx4
=v3w1w4β

∗η1 < 0

v3w4w1
d2f3

dx4dx1
=v3w4w1β

∗η1 < 0



. (3.39)

The sum of equations in (3.39) is the value of a given by:

a = 2v3w1β
∗(w3 + w4η1) < 0 (3.40)

a < 0 since w1 < 0 and v3, w3, w4 > 0 .

To find the value of b as per theorem 3, we let k = 3, i = 3, 4. When k = 1, 2, 4, 5

and i = 1, 2, 5, the second derivative of xi and xjwill be zero.

v3w3
df3

dx3dβ∗
= Λ
µ
v3w4

df3

dx4bβ∗
= η1Λ

µ
(3.41)

From equation (3.41) the expression of b is;
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b = v3
Λ
µ

(w3 + w4η1) > 0. (3.42)

Hence from theorem 8 item iv, β∗ changes from negative to positive, 0 changes

its stability from stable to unstable. This means a negative unstable equilibrium

becomes positive and locally asymptotically stable.

3.1.10 Sensitivity Analysis of the Model

The Partial Rank Correlation coefficient (PRCC) is one of the efficient methods

used for testing the sensitivity analysis of the parameters. We use Latin Hyper-

cube Sampling (LHS) to sample the parameters as it densely stratifies the input

parameters. PRCC measures the strength between the outputs and inputs of the

model correlation through sampling done by LHS method (Bidah et al., 2020;

Pennington, 2015).

Our model has sixteen parameters and we desire to determine the most significant

parameters i.e the parameters that impact the model output significantly. We

performed 1000 runs in our simulations. The parameter with large PRCC values

(0.5 > or −0.5 <) are deemed the most influential in the model. The closer the

PRCC value is to +1 or -1 the more strongly the parameter influences the outcome

measure. A negative sign indicates that the parameter is inversely proportional

to the outcome measure (Gomero, 2012).
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Table 3.3: Sensitivity Analysis Index of Model 1
Serial No Parameter 600 run

1 Λ 0.0228

2 µ -0.4057

3 β 0.9310

4 βm -0.5145

5 α1 0.0351

6 α2 -0.2562

7 σ1 0.9239

8 σ2 -0.1038

9 τ1 -0.6327

10 τ2 -0.6713

11 δ -0.8454

12 θ1 -0.7394

13 θ2 -0.0321

14 ρ 0.5720

15 ω -0.0135

16 η1 -0.0507

The parameters on the left of Figure 3.2 which have sensitivity index greater

than 0.5 are βm, τ1, τ2, δ and θ1. Increasing any of these parameters decrease the

reproduction number R0 hence decrease alcohol consumption in the community.

The parameters on the right of Figure 3.2 have positive sensitivity analysis index,

which means that increase their values increase the reproduction number hence

increase the alcohol in the community. These parameters that sensitivity analysis

index less than −0.5 are β, σ1 and ρ.
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Figure 3.2: Tornado Plots for model 1

3.2 Model 2

In this section, we consider model 2 which has imperfect or ineffective mass media

campaign. When individuals are exposed to mass media campaign against alcohol

abuse, some still get into alcohol drinking habits and while others get to suscepti-

ble class. The population that get to drinking class after exposure to mass media

campaign against alcohol abuse shows that the campaigns were not effective. An-

other fraction of the population effects the campaigns and do not join the drinking

class but gets back to the susceptible class.

3.2.1 Model Formulation

This section involves model assumptions, model descriptions, model flow chart

and model equations.

3.2.2 Model Description

Our study uses seven compartments, six human population-based compartments

and one media compartment. The population-based compartments are S - Sus-



37

ceptible who have never used alcohol in their life, Sa - individuals exposed to

media campaign and have never used alcohol, L - Light drinkers who drink two

to three drinks one or two times a week, H - Heavy drinkers who are dependent

on alcohol, T - individuals under treatment or in the rehabilitation centres and Q

-individuals who have stopped drinking permanently. The media compartmentM

- is the density of the media campaign. The progression from one class to another

will be formulated into seven nonlinear ordinary differential equations as shown

in Figure 3.2.

Individuals are recruited into the model at a rate of Λ. Individuals are initiated

to alcohol drinking due to contact with the light drinkers at a rate of λ where λ is

given by β(L+η1H) and β is the effective contact rate of light and heavy drinkers

with the non drinking classes and η1 is the rate of the heavy drinkers contacting

the susceptible which is always less than the rate of contact of the light drinkers

with the susceptible. Hence η1 is always less than one. The rate of dissemination

of media awareness to the susceptible is βm. The human population die due to

natural causes at a rate µ and they die due to alcohol related causes at a rate δ.

The rate of increase of alcohol intake from a few drinks a week to dependence to

alcohol is α1 and light drinkers quit drinking at a rate of α2. The rate at which

heavy drinkers seek treatment or go to rehabilitation centers for treatment is σ1

and the rate at which heavy drinkers quit drinking without treatment is σ2, where

σ2 << σ1 because very few addicts quit drinking without treatment. The effective

treatment rate of the heavy drinking class is τ1, which partly due to media aware-

ness programs. The rate of relapse after rehabilitation back to heavy drinking is

τ2. The rate of the media awareness campaign on the light drinkers is represented

by θ1 and θ2 represents the rate of media awareness programs of the heavy drink-

ing classes which will increase the rate of joining the treatment class. ρ represents

the depletion(depreciation) of the media campaigns due to ineffectiveness of the

programs or other factors. The rate of effective media campaigns against alcohol

is denoted by ω. The efficacy(effectiveness) of the media campaign is measured by

ε. Table 3.4 gives the variables and Table 3.5 gives the summary of the parameters
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and their description used in our research.
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Table 3.4: Definitions of Variables

Variables Definitions

S Susceptible who have never drank alcohol

Sa Susceptible who are pre - exposed to effects of alcohol abuse

L Light drinkers who drink about five drinks, two or three times a week

H Heavy drinkers who drink daily and dependent on alcohol

T Individuals on rehabilitation and not exposed to alcohol

Q Individuals who completely quit alcohol and leave the model

M Awareness programs driven by mass media
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Table 3.5: Parameters and their Description

Parameter Description

Λ Recruitment rate of drinkers into population

µ Natural death rate

λ Contact rate of susceptible with the light drinkers

β2 Effective contact rate

βm Rate of dissemination of media awareness of the susceptible

α1 Transfer rate of light drinkers to heavy drinkers

α2 Rate of quitting alcohol of the light drinkers

σ1 Treatment rate of the heavy drinkers (rate of joining rehabilitation)

σ2 Rate of heavy drinkers quitting the drink

τ1 Rate of effective treatment

τ2 Rate of relapse back to heavy drinking from rehabilitation

δ Death rate due to alcohol abuse

θ1 Rate of awareness programs being implemented on the light drinkers

θ2 Rate of awareness programs being implemented on the heavy drinkers

ρ Rate of depletion of media programs

ω Rate of effective (successful) media campaign

η1 Modification Parameter

ε Efficacy(effectiveness) of media Campaign

3.2.3 Model Assumptions

These are the assumptions of model 2.

• There is exposure to media campaign before initiation to alcohol, which

implies that only the susceptible are influenced to drink alcohol by Mass

media campaigns.

• There is homogeneous mixing of the population in Kenya and individuals

become alcoholic after contact with individual in the light drinking class and
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heavy drinking class.

• Alcohol becomes a problem when the individuals move to the heavy drinking

class but there is no problem when they are in the light drinking class.

• When individuals are exposed to media campaign, they may become alco-

holic or not, where this rate is determined by ε and 0 ≤ ε ≤ 1. When ε = 1,

we have model 1 and when ε = 0 the campaign is ineffective.

• Those in rehabilitation and quitters do not cause initiation and media cam-

paign depletes the rate of initiation.

• When the individuals relapse, they move to the heavy drinking class.

3.2.3.1 Model Flow Charts and Equations of Model 2

From Figure 3.3 we formulate linear differential equations below.

dS

dt
=Λ + ωSa − βmSM − (λ+ µ)S

dSa
dt

=βmSM − (ω + µ)Sa − λ(1− ε)Sa
dL

dt
=λS + λ(1− ε)Sa − (µ+ α1 + α2)L

dH

dt
=α1L+ τ2T − (µ+ σ1 + σ2 + δ)H

dT

dt
=σ1H − (µ+ τ1 + τ2)T

dQ

dt
=α2L+ σ2H + τ1T − µQ

dM

dt
=θ1L+ θ2H − ρM



(4.1)

Where λ = β(L+η1H). To make the mathematical analysis easier and convenient,

we introduce the following: Φ1 = ω+µ, Φ2 = 1− ε, Φ3 = µ+α1 +α2, Φ4 =

µ+ σ1 + σ2 + δ, Φ5 = µ+ τ1 + τ2, Φ6 = ρ
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3.2.4 Model Analysis

In this section we consider model analysis of model 2 which include: invariant

region, positivity of the model, alcohol abuse reproduction number, alcohol free

equilibrium(AFE),local and global stability of AFE, endemic equilibrium point,

the bifurcation of the model and sensitivity analysis of the model.

3.2.5 Invariant Region and Positivity

We use the following Lemma to show the region where our model epidemiologically

meaningful and if it is well posed.

Lemma 1. The feasible region Ω1 is defined by the set

Ω1 =
{

(S, Sa, L,H, T,Q) ∈ R6
+ : 0 ≤ N(t) ≤ Λ

µ

}
.
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with initial data S > 0, Sa, L > 0, H > 0, T > 0, Q > 0,M > 0, which is positively

invariant for all t ≥ 0.

Proof. The sum of the human compartments give the total population N , where

N = S + Sa + L+H + T +Q. Taking the sum of the derivatives we obtain

dN

dt
= Λ− µN − δH. (4.2)

Since δH ≥ 0 for all t ≥ 0 Equation (4.2) can be re-written as

dN

dt
≤ Λ− µN. (4.3)

Integrating equation (4.3) using integrating factor eµt, we obtain

N(t) = Λ
µ

+
(
N(0)− Λ

µ

)
e−µt. (4.4)

As t→∞, we get lim sup
t→∞

N(t) ≤ Λ
µ
. This, means that the region Ω1 is attracting

all the solutions in R6
+, which gives the feasible solution set of the model system

(4.1) as;

Ω1 =
{

(S, Sa, L,H, T,Q) ∈ R6
+ : 0 ≤ N(t) ≤ Λ

µ

}
. (4.5)

If N(0) ≤ Λ
µ
, then N(t) ≤ Λ

µ
, as t tends to ∞, and if N(0) > Λ

µ
, then it implies

that either the solution enters Ω1 in finite time or N(t) approaches Λ
µ
asymptoti-

cally. Therefore the region Ω1 is mathematically well-posed and epidemiologically

meaningful. In addition, the usual existence, uniqueness and continuation result

hold for the model system (4.1).

To show the Positivity of the model we use the following theorem.

Theorem 4. If all parameters of the model system 4.1 are positive and the initial

conditions satisfy,

{(S(0), Sa(0), L(0), H(0), T (0), Q(0),M(0)) ≥ 0} ∈ Ω1,
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then the solutions set {S(t), Sa(t), L(t), H(t), T (t), Q(t),M(t)} of the model system

(4.1) is non-negative for all t ≥ 0.

Proof. From the first equation of the model system (4.1), we have

dS

dt
= Λ + ωSa − βmSM − (λ+ µ)S. (4.6)

ωSa ≥ 0 for all t ≥ 0 equation (4.6) can be re-written as

dS

dt
≤ Λ− ζS − µS, (4.7)

where ζ = λ+ βmM . The expression in 4.7 can be written as

d

dt

(
S exp

{∫ t

0
ζ(u)du+ µt

})
≤ Λ exp

{∫ t

0
ζ(u)du+ µt

}
, (4.8)

Integrating both sides of (4.8) from 0 to t, we obtain

S(t̂) exp
{∫ t

0
ζ(u)du+ µt

}
− S(0) ≤

∫ t

0
Λ exp

{∫ x

0
ζ(x)dx+ µy

}
dy, (4.9)

then multiplying both sides of (4.9) by exp
{
−
∫ t∗

0
ζ(u)du− µvt

}
, we have

S(t̂) ≤ S(0) exp
{
−
∫ t

0
ζ(u)du− µt

}
+ exp

{
−
∫ t

0
ζv(u)du− µt̂

}
×
∫ t̂

0
Λ exp

{∫ x

0
ζ(x)dx+ µy

}
dy > 0.

(4.10)

Since, the right-hand side of the expression (4.10) is always positive, the solution

S(t) will always remain positive for all t > 0. Using the same argument, it can be

shown that the quantities Sa, L,H, T,Q and M are positive for all t > 0.

3.2.6 Alcohol Free Equilibrium (AFE) and Alcohol Reproduction Number

The AFE of the system (4.1) given by E0
a = {S0, S0

a, L
0, H0, T 0, Q0,M0} is ob-

tained by equating all the alcohol classes to zero and solving the equations. We

assume there is no alcohol in the community. This means that L = H = T = Q =
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M = 0 and Sa = 0, hence;

S0 = Λ
µ
.

The AFE is given by

E0
a = {S0, S0

a, L
0, H0, T 0, Q0,M0} = {Λ

µ
, 0, 0, 0, 0, 0, 0} (4.11)

We use the next generation method as in (Castillo-Chavez et al., 2002), to find

the alcohol abuse reproduction number R0a. The reproduction number R0a

is worked from the largest eigenvalue of the matrix F.V −1, where, F represent

the new infection and V represent transfer of infection. In our model, equations

of F are given by, f1 = β2(L + η1H)S0, f2 = 0, f3 = 0, where S0 = Λ
µ
at AFE

point. Since there no new infections with an ineffective media campaign, the re-

production number of model 2 is similar to that of model 1. Finding the partial

derivatives of F with respect to L,H, T we obtain

F =



β2
Λ
µ

β2
η1Λ
µ

0

0 0 0

0 0 0



V =



Φ6 0 0

−α1 Φ3 −τ2

0 −σ1 Φ4


.

Therefore the alcohol abuse reproduction number is;

R0a = βΛ(Φ3(1−Ψ1) + α1η1)
Φ3Φ6µ(1−Ψ1) , where Ψ1 = δ1τ2

Φ3Φ4
. (4.12)

From (4.12), Ψ1 refers to the proportion of individuals who move from H to T and
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back. On the other hand (1 − Ψ1) are the individuals who do not cycle between

the two compartments.

3.2.7 Local and Global Stability of AFE

Theorem 5. The AFE point (E0
a) is locally asymptotically stable if R0a < 1 and

unstable if R0a > 1.

Proof. To prove the theorem, we obtain the Jacobian matrix of the system 4.1

at E0
a. We let Φ1 = ω + µ, Φ2 = 1 − ε, Φ3 = µ + σ1 + σ2 + δ, Φ4 =

µ+ α1 + α2, Φ5 = ρ, Φ6 = µ+ τ1 + τ2., hence our system 4.1reduces to:

dS

dt
= Λ + ωSa − βmSM − (λ+ µ)S

dSa
dt

= βmSM − φ1Sa − λ(1− ε)Sa
dL

dt
= λS + λφ2Sa − φ4L

dH

dt
= α1L+ τ2T − φ3H

dT

dt
= σ1H − φ6T

dQ

dt
= α2L+ σ2H + τ1T − µQ

dM

dt
= θ1L+ θ2H − φ5)M



(4.13)
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The Jacobian of equation 4.1 is given by;

JE0
a

=



−µ ω −Λβ
µ

−Λβη1
µ

0 0 −βmΛ
µ

0 −Φ1 0 0 0 0 βmΛ
µ

0 0 Λβ
µ
− Φ6

Λβη1
µ

0 0 0

0 0 α1 −Φ3 τ2 0 0

0 0 0 σ1 −Φ4 0 0

0 0 0 α2 σ2 −µ 0

0 0 θ1 θ2 0 0 −φ5



(4.14)

From equation 4.14 it can easily be seen that −µ, −Φ1 and φ5 are the first three

eigenvalues which have negative real parts. The remaining eigenvalues are ob-

tained from the following reduced matrix in equation 4.15.

JE0
a

=



Λβ
µ
− Φ6

Λβη1
µ

0

α1 −Φ3 τ2

0 σ1 −Φ4


(4.15)

The characteristic polynomial of (4.15) is given by

y(ν) = ν3 + a1ν
2 + a2ν + a3, (4.16)
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where

a1 = −βΛ
µ

+ φ3 + φ4 + φ6

a2 = −α1βΛη1

µ
− βΛφ3

µ
− βΛφ4

µ
− σ1τ2 + φ3φ4 + φ3φ6 + φ4φ6,

a3 = −α1βΛη1φ4

µ
+ βΛσ1τ2

µ
− βΛφ3φ4

µ
− σ1τ2φ6 + φ3φ4φ6.

We can write a3 in terms of R0a as

a3 = (1− ψ1)φ3φ4φ6 (1−R0a) .

We then use Routh-Hurwitz criterion (Routh, 1877), to establish the necessary

and sufficient conditions for all the roots of y(ν) to have negative real parts. The

Routh-Hurwitz criterion of stability of the AFE is given by



H1 > 0

H2 > 0

H3 > 0

⇐⇒



H1 > 0

H2 > 0

H3 > 0

,

where

H1 = a1, H2 =

∣∣∣∣∣∣∣∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣∣∣∣∣∣∣∣
, H3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0

a3 a2 a1

0 0 a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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We then have

H1 = a1 = −βΛ
µ

+ φ3 + φ4 + φ6,

H2 = a1a2 − a3 =
(
−βΛ
µ

+ φ3 + φ4 + φ6

)
(
−α1βΛη1

µ
− βΛφ3

µ
− βΛφ4

µ
− σ1τ2 + φ3φ4 + φ3φ6 + φ4φ6

)

− (1−R0) (1− ψ1)φ3φ4φ6

H3 = a1a2a3 − a2
3 = (1−R0)φ3φ4φ6

(
−βΛ
µ

+ φ3 + φ4 + φ6

)

(1− ψ1)
(
−α1βΛη1

µ
− βΛφ3

µ
− βΛφ4

µ
− σ1τ2 + φ3φ4 + φ3φ6 + φ4φ6

)

− (1−R0) 2 (1− ψ1) 2φ2
3φ

2
4φ

2
6.

The above result shows that we have H1 > 0, H2 > 0 and H3 > 0 if

and only if R0a < 1. Therefore we conclude that the AFE is locally asymptotically

stable whenever R0a < 1.

We use the theorem by (Castillo-Chavez and Song, 2004) as used by (Tilahun

et al., 2018), to investigate the global stability of AFE of system (4.1).

Theorem 6. The fixed point Ũ0 = (X∗, 0) = (Λ
µ
, 0, 0, 0, 0, 0) is globally asymptot-

ically stable equilibrium of the model 2, if R0a < 1 (locally asymptotically stable)

and assumption (H1) and (H2) are satisfied where (H1) for dX
dt

= F (X, 0), X0 is

globally asymptotically stable.

(H2), G(X,Z) = AZ − G̃(X,Z), G(X,Z) ≥ 0 for (X,Z) ∈ R6
+ where A =

DZG(X, 0) is an M- matrix (the off diagonal element of A are nonnegative) and

R6
+ is the region where the model makes biological sense.

The equation 4.1 is written as dX
dt

= F (X,Z), dZ
dt

= G(X,Z), where X = (S) rep-

resents the alcohol free classes and Z = (L,H, T ) represents the alcohol drinking

classes. G(X, 0) = 0, Ũ0 = (X∗, 0) = (Λ
µ
, 0, 0, 0, 0, 0) denotes the AFE point of the

model.
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Proof. In this case, F (X, 0) = (Λ− µS), X = (S, Sa, Q) and Z = (L,H, T ).

A =



β2 − k1 β2η1 0

α1 −k2 τ2

0 σ1 −k3



AZ =



(β2 − k1)L+ (β2η1)H

α1L− k2H + τ2T

σ1H − k3T



G(X,Z) =



λS − k1L

α1L− k2H + τ2T

σ1H − k3T



G̃(X,Z) = AZ −G(X,Z)

G̃(X,Z) =



β2(L+ η1H)(1− S0)

0

0


The matrix for G̃(X,Z) reduces to:
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G̃(X,Z) =



β2(L+ η1H)(1− S
N

)

0

0


Since S ≤ N, S

N
≤ 1, it is clear that G̃(X,Z) ≥ 0. It is also clear thatX∗ = (Λ

µ
, 0, 0)

is globally asymptotically stable equilibrium of dX
dt

= F (X, 0). Hence the model is

globally asymptotically stable.

3.2.8 Endemic Equilibrium Point (EEP)

Endemic equilibrium of our model occurs when alcohol persists in the community.

This equilibrium is denoted by E∗a = {S∗, S∗a, L∗, H∗, T ∗, Q∗,M∗}. To obtain E∗a,

we equate the RHS of system 4.1 to zero. After solving the system in terms of L∗

we obtain;

S∗ = ωS∗a + Λ
βη1H∗ + µ+ βL∗ + βmM∗ , H∗ = α1L

∗ + τ2T
∗

Φ3
,

T ∗ = α1L
∗σ1

Φ3Φ4(1−Ψ1) ,

S∗a = ΛβmM∗

() (βΦ2λ∗ + Φ1) +M∗βm (βΦ2λ∗ + Φ1 − ω) ,

Q∗ = L∗ (α1 (σ1τ1 + σ2Φ4) + Φ3Φ4α2 (1−Ψ1))
Φ3Φ4µ (1−Ψ1) ,

M∗ = L∗(Φ4(θ1Φ3(1−Ψ1) + α1θ2))
Φ3Φ4Φ5 (1−Ψ1) .



(4.17)

Substituting the solutions of the state variables in (4.17) into the third equation

of (4.1) we get;

A2L
∗2 + A1L

∗ + A0 = 0, (4.18)
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where,

A2 = βΦ2Φ6(Φ4(Φ3(1−Ψ1) + α1η1))(βΦ5(Φ4(Φ3(1−Ψ1) + α1η1))

+ βm(Φ4(θ1Φ3(1−Ψ1) + α1θ2))),

A1 = −[βm(Φ1 − ω)(Φ4(α1θ2 + Φ3θ1(1−Ψ1)))+

βΦ5(µΦ2 + Φ1)(Φ4(α1η1 + Φ3(1−Ψ1))]

+ µΦ2R0a(βΦ5(Φ4(α1η1 + Φ3(1−Ψ1)) + βm(Φ4(α1θ2 + θ1Φ3(1−Ψ1)))),

A0 = µΦ1Φ5Φ6Φ2
3Φ2

4 (1−Ψ1) 2(1−R0a).


Note that A2 is positive, and that A1 may be rearranged as:

A1 =
[

µΦ2R0a(βΦ5(Φ4(α1η1 + Φ3φ7) + βm(Φ4(α1θ2 + θ1Φ3φ7)))
βm(Φ1 − ω)(Φ4(α1θ2 + Φ3θ1φ7)) + βΦ5(µΦ2 + Φ1)(Φ4(α1η1 + Φ3φ7) − 1

]
,

where φ7 = 1− ψ1 It follows that:

(i) There is a unique endemic equilibrium if A0 < 0 (i.e. if R0a > 1);

(ii) There is a unique endemic equilibrium if A1 < 0; and A0 = 0; or A2
1 −

4A2A0 = 0;

(iii) There are two endemic equilibria if A0 > 0; A1 < 0 and A2
1 − 4A2A0 > 0;

(iv) There are no endemic equilibria otherwise.

We need to note that equation (4.1) has a backward bifurcation at R0a = 1 if and

only if A0 < 0 and A2
1 − 4A0A2 > 0, (Omondi et al., 2017). This means that the

conditions that R0a < 1 is no longer applicable for a situation where alcohol is

eradicated in the community. For us to achieve the this goal, we have to bring

R0a below the critical values Rc. To obtain Rc, we equate the discriminate of the

equation (4.18) to zero and make R0a the subject. Thus Rc is given by;

Rc =
[
1− A2

1
4A2µΦ1Φ2

3Φ2
4Φ5Φ6 (1−Ψ1) 2

]
.

We note that the hypothesis A0 > 0 is equivalent to R0a < 1, and the hypothesis
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A1 < 0 is equivalent to R0a > Rc. The results of this section may be summarized

in the following theorem.

Theorem 7. If R0a < 1, then E0 is an equilibrium of system (4.1) and it is

locally asymptotically stable. Furthermore, there exists an endemic equilibrium

if conditions in item (ii) are satisfied, or two endemic equilibria if conditions in

item (iii) are satisfied. If R0a > 1, then E0 is unstable and there exists a unique

endemic equilibrium.

3.2.9 Bifurcation of the Model

Here, we prove that the occurrence of multiple alcohol persistent equilibria for

R0a < 1 comes from a backward bifurcation. We investigate the nature of the

bifurcation by using the method introduced in (Castillo-Chavez and Song, 2004),

which is based on the centre manifold theory (Lee and Milgram, 1983; Omondi

et al., 2018b,a). In the centre manifold theorem, there are two important quan-

tities: the coefficients, say a and b of the normal form representing the dynamics

of the system on the central manifold. These coefficients give information on the

direction of the transcritical bifurcation. In particular, if a < 0 and b > 0, then

the bifurcation is forward; if a > 0 and b > 0, then the bifurcation is backward.

Using this approach, the following result is may be obtained.

Theorem 8. The system (4.1) has a backward bifurcation at R0a = 1 if and only

if A1 < 0 and A2
1 − 4A2A0 > 0.

Proof. Considering Ra0 = 1, let β∗ be given by

β∗ = Φ3Φ4µ(1−Ψ1)
Λ(Φ4(1−Ψ1) + α1η1) .

The Jacobian matrix of the system (4.1) evaluated at AFE is as given in (4.14).

The linearised system (4.14) with β = β∗ admits a simple zero eigenvalue and the

other eigenvalues are real and negative. Denote by v = (v1, v2, v3, v4, v5, v6, v7) and

w = (w1, w2, w3, w4, w5, w6, w7)T , a left and a right eigenvectors associated with
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the zero eigenvalue, respectively, such that v.w = 1. It follows that:

v =


v1 = v2 = v6 = v7 = 0, v3 = 1, v4 = η1Φ3Φ5

σ(µ+ τ1) + α1η1Φ5 + Φ5(δ + σ2 + µ) ,

v5 = τ2v4.



w =



w1 = −µΦ1Φ6

(
θ2ΛΦ5ψ (α1 + θ1Λψ)

Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1) + Φ1Φ6 (α1 + α2 + θ1Λψ + µ)
)
,

w2 = Λψ (α1θ2Φ5 + θ1 (Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1)))
µΦ1Φ6 (Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1)) , w3 = 1,

w4 = α1Φ5

Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1) , w5 = α1σ1

Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1) ,

w6 = α2 (Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1)) + α1 (σ1τ1 + σ2Φ5)
µΦ5 (δ + µ+ σ2) + µσ1 (µ+ τ1) ,

w7 = α1θ2Φ5 + θ1 (Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1))
ρ (Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1)) .



T

The system (4.1) can be written in the form dx
dt

= F = (f1, f2, f3, f4, f5, f6, f7)t.

From (Castillo-Chavez and Song, 2004), the coefficients a and b are defined as

a =
3∑

k,i,j=1
vkwiwj

∂2fk
∂x1∂xj

(E0, β
∗), b =

3∑
k,i=1

vkwi
∂2fk
∂xi∂β∗

(E0, β
∗).

If we let S = x1, Sa = x2, L = x3, H = x4, T = x5, Q = x6 and M = x7, It

can be checked that:

∂2f3

∂x1∂x3
= β∗,

∂2f3

∂x1∂x4
= η1β

∗,
∂2f3

∂x2∂x3
= Φ2β

∗,
∂2f3

∂x2∂x4
= Φ2η1β

∗,

∂2f3

∂x3∂β∗
= Λ
µ
,

∂2f3

∂x4∂β∗
= η1Λ

µ
.

Taking into account of system (4.1) and considering only the nonzero components
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of the left eigenvector v, it follows that

a = v3w1w3
∂2f3

∂x1∂x3
+ v3w1w4

∂2f3

∂x1∂x4
+ v3w2w3

∂2f3

∂x2∂x3
+ v3w2w4

∂2f3

∂x2∂x4
,

= −Φ3(
α1 + α2 + µ

Λ + βm(2ω + µ(2− ε)) (α1θ2Φ5 + θ1 (Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1)))
µΦ1Φ6 (Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1))

)

< 0,

b = v3w3
∂2f3

∂x3∂β∗
+ v3w4

∂2f3

∂x4∂β∗
= Λ
µ

(
1 + η1α1Φ5

Φ5 (δ + µ+ σ2) + σ1 (µ+ τ1)

)
> 0.

The value of a < 0 and b > 0, hence the system (4.1) exhibits backward bifurcation

at R0a = 1 (Theorem 8).

3.2.10 Sensitivity Analysis of Model 2

We apply the method of (Bidah et al., 2020) ,(Pennington, 2015) and (Gomero,

2012) to analyze the sensitivity analysis of our model. They used PRCC to test

the sensitivity analysis and LHS to sample the parameters.

Model 2 has seventeen parameters and determined the most influential parame-

ters. We performed 1000 runs in our simulations. From Table 3.4 the parameters

with the sensitivity values close to −1 and +1 are more significant than the pa-

rameters close to zero. Figure 3.3 shows the sensitivity analysis using bars on the

left and right. The bars on the left have a negative sensitivity analysis index and

are inversely proportional to the reproduction number. The parameters on the

right have a positive sensitivity analysis index which implies that if their values

are increased the reproduction number increases. It means that these values are

more significant in increasing alcohol consumption in the community.
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Table 3.6: Sensitivity analysis index of model 2
Serial No Parameter 300 Run

1 Λ 0.0219

2 µ -0.6111

3 β 0.5671

4 βm -0.0119

5 α1 0.0629

6 α2 -0.2923

7 σ1 0.9492

8 σ2 -0.0874

9 τ1 -0.7389

10 τ2 -0.7182

11 δ -0.9058

12 Θ1 -0.0291

13 Θ2 -0.0507

14 ρ -0.0080

15 ω -0.0252

16 η1 -0.0385

17 ε -0.4499

The parameters with large negative sensitivity analysis index greater than -0.5

are α1, τ1, τ2, δ and ε. These parameters contribute greatly in reduction alcohol

consumption in the community. The parameters with positive sensitivity analysis

index are β and σ1.
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Figure 3.4: Tornado Plots for Model 2



CHAPTER FOUR: RESULT AND DISCUSSION

4.1 Parameters

In this chapter, we look at the numerical simulations and discussions of each model

and then consider the comparative analysis of what is already done by other au-

thors comparing to our work. For both models, we use the values in Table 4.1.

Table 4.1: Parameter Values and their Sources

Parameter Value Source

Λ 1674000 KKNB (2010)

µ 0.025 Assumed

β, β2 0.00000002 Misra et al. (2011)

βm 0.00005 Assumed

α1 0.031 Assumed

α2 0.07 Assumed

σ1 0-0.09 Assumed

σ2 0.05 Assumed

τ1 0.1 Assumed

τ2 0.2 Assumed

δ 0.2 Assumed

θ1 0.0005 Misra et al. (2011)

θ2 0.0001 Assumed

ρ 0.06 Misra et al. (2011)

ω 0.0002 Assumed

η1 0.01 Assumed

ε 0-1 Assumed

58
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4.2 Numerical Simulation of Model 1

To study the dynamics of system (3.1), we use MATLAB (ode45) software. We

use parameters in Table 4.1. The initial population of S, Sa, L,H and Q are from

(United Nations and Social Affairs, 2019). We collected secondary data from re-

habilitation centers in Kenya and data from (NACADA, 2017) website to identify

the initial population of the treatment class.

To estimate the initial conditions of the steady states we used the Kenyan pop-

ulation which is estimated to be approximately 52 million people according to

United Nation Estimate population (2019) (United Nations and Social Affairs,

2019). This is equivalent to N = S + Sa + L + H + T + Q. Alcohol prevalence

is estimated to be 30 percent and 13.3 percent of this is estimated to be addicted

to alcohol (NACADA, 2012). This translates to 15.6 million people in the classes

L + H + T + Q and about 2.028 million people addicted to alcohol. So we use

the initial conditions are: S(0) = 7280000, Sa(0) = 29100000, L(0) = 11570000,

H(0) = 2028000, T (0) = 2000, Q(0) = 2000000.

Figure 4.1: Susceptible population

Figure 4.1 represent a susceptible population which reduces sharply for the first
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Figure 4.2: Exposed Population.

five days. This is due to the movement to the exposed after contact with media

and others initiated to light drinking class. The population then increases for

the next forty days and reduces again. This is because the population from the

exposed get back to the susceptible classes after an effective media campaign.

Figure 4.2 represent the exposure to media class which increase for the first thirty

days. This is due to the inflow from the susceptible class. The population then

reduces as the exposed individual gradually move back to the susceptible class.

These two classes have never taken alcohol in their lifetime.
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Figure 4,3: Alcoholic Classes for model 1

Figure 4.3 represent classes that have ever consumed alcohol in their lifetime.

These are light drinkers (Figure 4.3 (a)), heavy drinkers (Figure 4.3 (b)), treated

(Figure 4.3 (c))and the quitters (Figure 4.3 (d)). The number of light drinkers

decreases for the first ten days. This is because they either move to heavy drinking

class or quit drinking alcohol.

The heavy drinking class decrease with time due to the individuals being encour-

aged to go for treatment and others die due to alcohol-related complications.

The people under treatment increase sharply for the first ten days. This is because

of the population from the heavy drinking class joining rehabilitation centres. The

population then decreases due to effective treatment rate and others relapse back

to heavy drinking class. The population then increases as the individuals get back

to the class from heavy drinking class.

The quitters increase for the given time. This is because individuals quit or stop

drinking from the light drinking class, heavy drinking class and mostly from the

treatment class. This shows that when individuals quit drinking, alcohol abuse is

greatly reduced in the community.
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Figure 4.4: Alcohol Prevalence classes

Figure 4.4 represent the alcohol prevalence classes plotted in the same axes. The

light drinkers decrease in the first few days because some individuals move to

the heavy drinking class while many others move to quitters class. Light drinkers

have a higher probability of quitting alcohol since they are not addicted to alcohol.

The quitters class population increase in the first few days then decrease but the

number in the class is more than the number in the heavy drinking class and also

in the treatment class.

Figure 4.5: Varying alcohol treatment
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In Figure 4.5, the treatment rate increases from 0.02− 0.08 where these numbers

represent the rate at which the individuals join the treatment class. The treatment

offered in the rehabilitation centres includes medication and counselling. When

the rate of treatment is increased, the number in the treatment class increases

then decrease and later stabilizes as they settle in the rehabilitation centres. The

treatment time ranges from one month to three months. From the graph, we

conclude that as we increase the rate of treatment the number of individuals

under treatment increases.

Figure 4.6: Mass media density for model 1

Figure 4.6 shows the rate of increase of media dissemination with time. The mass

media campaign increase in the first days and then decrease up to the day thirty

when the mass media campaign stabilizes. The y-axis includes all mass media

campaigns. This means that this does not involve the human population but the

actual mass media.

4.3 Numerical Simulation of Model 2

We carry out numerical simulation of model 2 using the parameters in table 4.1

and the initial conditions: S = 7.28X106, Sa = 2.91X107, L = 11.57X107, H =

2.028X106, T = 2.0X103, Q = 2.0X106. We use initial values S = 7.28X106, Sa =
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2.91X107, L = 11.57X107, H = 2.028X106, T = 2.0X103, Q = 2.0X106.

Figure 4.7: All Human Population

Figure 4.7 shows plots of all human population in model 2. The susceptible class

population goes down and then stabilizes after the first few days because the pop-

ulations move to exposed class and light drinking class. The exposed to media

population decrease due to movement to the other class but thereafter increase to

an equilibrium point. The light and the heavy drinkers’ population increase in the

first few days, then reduce and then become steady. The treatment class increase

as individuals move to other classes then reduces and become steady. The quitters

class increase since all the other populations are quitting alcohol abuse.
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Figure 4.8: Alcohol Users

Figure 4.8 represent the individuals who have ever taken alcohol at any time in

their lifetime. The y-axis represents the population of alcohol user. The quitters

class increase with time since individuals move from all other classes to quitters

class. The light drinkers class increase in the first days but later decrease because

some individuals go for treatment and others quit alcohol. The least populated

class is the treatment class because few heavy drinkers go for treatment. The rate

of change in the treatment class is very low. If the rate of treatment is increased

and the number of people under treatment increases then they will a reduction of

people in the drinking classes.
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Figure 4.9: All population classes for model 2

Figure 4.9 represent the relationship between all the population classes of our

model. The number of people in the treatment class is very small compared to

the number in the other classes. The susceptible individuals decreased with time

as they join the exposed population and others move to light drinking class. The

exposed population increases due to individuals joining the group from the suscep-

tible population. The light drinkers increase in the first few days then decrease.

This is because of the individuals moving from the susceptible to this class. The

heavy increases slightly then stabilize for the remaining time. The treatment class

graph starts from very low because of the number of individuals joining the class

and does not increase since some are joining the group and others are quitting.

The quitters class is the largest since individuals join it from all the other classes.

Figure 4.10 shows varying treatment rate from 0.02 to 0.08 with ε = 0.5. As

the treatment rate increases, the number of individuals in the treatment class in-

creases. This is because more individuals are joining the treatment class from the

heavy drinking class. The treatment rate of 0.02 represents a smaller number of

individuals joining the treatment compared to 0.08. When the rate of treatment

is zero, the number of individuals in the treatment class remains constant.
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Figure 4.10: Varying treatment rate for model 2

Figure 4.11: Varying mass media exposure for model 2

Figure 4.11 shows how mass media dissemination varies with time from ε = 0.2 to

ε = 0.7. As the rate increases, the populations exposed to media increases. This

shows that there will be fewer people joining alcoholic classes as we increase media

awareness.
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Figure 4.12: Mass media density

Figure 4.12 represent mass media density for model 2. The mass media dissemina-

tion increase in the first days then decrease up to a point where the dissemination

is steady. The increase in mass media dissemination is due to campaign on against

alcohol abuse that is emphasized.

4.4 Comparative Analysis Results

Sharma and Samanta (2013), developed a mathematical model of alcohol abuse

and used four population classes. Their findings stressed the need for control-

ling and preventing habitual drinking as a means of reducing alcohol intake than

increasing the number of individuals undergoing treatment. In our model, we

stressed the need for increasing the treatment of alcohol as a means of reducing

the heavy drinkers and controlling the spread of alcohol use by using mass media

campaign.

Mancuso (2016), developed SIR model of alcoholism where the infected classes

were divided into moderate and occasional drinkers and heavy drinkers. They

concluded that it is better to prevent individuals from susceptible moving to in-

fected classes than it is to treat individuals in already infected or under treatment.

In our model we emphasis on reduction of heavy drinkers by recruiting them to
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the treatment class.

A study by (Misra et al., 2011), considered non-linear SIS model which studied the

effect of awareness programs driven by media on the spread of infectious diseases

with migration. The model analysis shown that awareness programs through me-

dia campaigns are helpful in decreasing the spread of infectious diseases. In our

model we used mass media campaign as a whole and also treatment of alcohol as

means of reducing alcoholism in the community.

A research by (Ma et al., 2015), modeled alcoholism as contagious disease. They

divided the population into three classes. Their aim was to analyze the impact

of awareness programs and time delays on alcohol consumption behavior. Their

study showed that awareness programs are an effective measure in reducing the

heavy drinking class. In our research, we incorporate the awareness programs

together with treatment as a measure to reduce heavy drinking class where thee

campaign played a bigger role in reducing alcoholism than treatment.

Huo and Zhang (2016), modeled the positive and the negative role of Twitter on

alcoholism. They concluded that the number of tweets affected the reproduction

number. They also concluded that reducing the number of negative tweets helped

reduce alcohol abuse and controlling the number of tweets posted by moderate

drinkers reduce alcohol consumption. In our research, we considered the effects

of all types of mass media campaigns on alcohol consumption and not just tweeter.

A study (Dubey et al., 2016), considered the role of media and treatment on SIR

model. They assumed that S formed another class Sa which represent the aware

population through social/electronic media density M. They showed that the in-

fected population decreased as they increased the information dissemination rate.

They concluded that if there is enough media awareness of the susceptible and

treatment to the affected then the disease could be eradicated. In our research,
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we considered the impact of the mass media campaign against alcohol abuse and

treatment of alcohol abuse and not contagious diseases.



CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion of Model 1

Model 1 was formulated using non linear differential equations generated from Fig-

ure 3.1. An effective mass media campaigns were incorporated where individuals

exposed to media campaigns did not join the drinking class.

In section 3.1 we analyzed the model considering the invariant region where we

concluded that the solutions sets of solutions enter and remain in the region for

all future time and the model is well-posed. The positivity of the model was an-

alyzed and it was concluded that all state variables are positive for all time t.

The reproduction number R0 of the model was determined, and it represented the

sum of the reproduction of the light drinkers RL and the reproduction number of

the heavy drinking class RH . We analyzed the local and global stabilities of AFE.

Using the theorem by Martin Jr (1974), we found that AFE is local asymptotically

stable if and only if R0 < 1. We also used the theorem by Castillo-Chavez et al.

(2002) to analyze global stability of AFE. We concluded that model 1 is global

asymptotically stable since it satisfies the conditions in Theorem 2. Conditions for

existence of EEP of the model were satisfied since endemic equilibrium exist and

is positive if R0 > 1. The bifurcation of the model which studies the nature of the

stability of the model at R0 = 1 shown that there exists a backward bifurcation

at R0 = 1.

The main objective of model 1 was to analyze the impact of treatment on alcohol

abuse hence, sensitivity analysis indicates that increase in the treatment rate re-

duces alcohol prevalence in the community. Sensitivity analysis also confirms that

relapse from the treatment class to heavy drinking class increase alcohol preva-

lence in the community.

Numerical simulation confirms the sensitivity analysis. The rate of treatment
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is varied as in Figure 4.5 and as the rate of treatment increases then alcohol

prevalence decrease hence treatment may reduce alcoholism in the community.

If no treatment is administered then no increase in population in the treatment

class hence more individuals remain in heavy drinking class. We concluded that

treatment is the best strategy in reducing individuals in the heavy drinking class.

5.2 Conclusion of Model 2

The local and global stability of AFE for this model were satisfied when R0a < 1.

For EEP we used the Center Manifold theory to analyze the bifurcation of the

model. The analysis identified that, β∗2 changes from negative to positive, 0

changes stability from stable to unstable. The negative unstable equilibrium be-

comes positive and locally asymptotically stable.

We analyzed the effect of media campaign using numerical simulation, where we

varied the mass media campaign rate from zero to 0.8 in Figure 4.11. We con-

cluded that as the rate of mass media campaign increases, the rate of recruitment

to alcohol drinking classes decreases. Hence mass media campaign can be used to

reduce alcohol consumption in the community.

Lack of sufficient data from rehabilitation centres made it difficult to achieve the

last objective in our model. We used the assumed data in our simulations. Oth-

erwise, all other objectives were met in our study.

5.3 Recommendations from the Study

Most of the rehabilitation centres in Kenya are not run by the government.

Some are privately owned while others are run by Non-Government Organiza-

tions (NGO). Hence the data of individuals in the rehabilitation centres is not

available. We were able to visit a few and we estimated the data of individuals
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under treatment.

We recommend the following:

1. The data of the individuals on alcohol treatment should be available to the

public for research purposes.

2. The Kenya government should construct rehabilitation centers and manage

them. This will make the centers available and cheap for all.

3. The Kenya government should regulate mass media campaign on alcohol con-

sumption. The government should encourage the campaign that discourage

alcohol consumption and discourage campaign that advertise alcohol mostly

to the youth.

5.4 Recommendation for Further Research

Further research to be carried out on the impact of mass media campaign on other

drugs abused in Kenya and also on the impact of rehabilitation centers in selected

counties where treatment is more emphasized. Further research can also be carried

on the prevalence of alcohol and drug abuse per gender and per region.

The main challenge of our study was availability of organized data for fitting in

the model. If data was available then we would have carried out validation of the

results.
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APPENDIX A

Theorem 9. (Castillo-Chavez and Song, 2004)

Consider the following general systems of ordinary differential equations with pa-

rameter β2, dx
dt

= f(x, β2), Rn ×R→ R and f ∈ C2(Rn ×R),

Where 0 is the equilibrium point of the system (that is,f(x, β2) ≡ 0 for all β2) and

assume

A1:A = Dxf(0, 0, 0, 0) = ( dfi
dxj

(0, 0, 0, 0)) is the linearization matrix of the system

(4.1) around the equilibrium 0 with β2 evaluated at 0. Zero is a simple eigenvalue

of A and other eigenvalues of A have negative real parts: A2: Matrix a has a

nonnegative right eigenvector w and a left eigenvector v corresponding to the zero

eigenvalue. letfk be the kth component of f and

a = ∑n
k,i,j=1 vkwiwj

d2fk
dxidxj

(0, 0, 0, 0)

b = ∑n
k,i=1(0, 0, 0, 0)vkwi d2fk

dxidβ2
(0, 0, 0, 0)

The local dynamics of the system around 0 is totally determined by the signs of a

and b.

i. a > 0, b > 0. When β2 < 0 with |β| << 1, 0 is locally asymptotically stable

and there exist a positive unstable equilibrium: when 0 < β2 << 1.0 is unstable

and there exists a negative, locally asymptotically stable equilibrium:

ii. a < 0, b < 0. When β2 < 0 with φ << 1, 0 is unstable, when 0 < β2 << 1, 0

is locally asymptotically stable equilibrium, and there exist a positive unstable

equilibrium.

iii. a > 0, b < 0. When β∗2 < 0 with |β∗2 | << 1, 0 is unstable, and there exist

a locally asymptotically stable negative equilibrium: when 0 < β∗2 << 1, 0 is

stable, and a positive unstable equilibrium appears.

iv. a < 0, b > 0.When β∗2 changes from negative to positive, 0 changes its stability

from stable to unstable. Corresponding a negative unstable equilibrium becomes

positive and locally asymptotically stable.
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