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ABSTRACT 

Studies have been done on the aspect ratio effect on natural convection turbulence using standard 

k-ε model but further studies showed that k-ω SST model performed better than both k-ε and k-ω 

model in the whole enclosure. Thus, there was need to do a numerical study on the natural 

convection fluid flow in a rectangular enclosure full of air using SST k-ω model. The left vertical 

wall of the enclosure was maintained at a steady high temperature Th of 323K while the right wall 

at a steady cool temperature Tc of 303K with the remaining walls adiabatic. Time-averaged energy, 

momentum and continuity equations with the two equation SST k-omega turbulence model were 

used to generate isotherms, streamlines and velocity magnitudes for different aspect ratios of the 

enclosure so as to be able to investigate effect of aspect ratio on turbulence. It was shown that as 

the aspect ratio of increased from 2, 4, 6 and 8 of the enclosure, the velocity of elements decreased 

and the vortices became smaller and more parallel thus concluded that an increase in aspect ratio 

decreased the turbulence. 
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CHAPTER ONE 

1.1 INTRODUCTION 

The mode of heat transfer in fluids (liquids and gases) is known as convection. When fluids are 

heated, they expand and thus density decreases. According to Archimedes’ principle, warmer and 

lighter part of the fluid will lead to rise through the neighbouring cooler fluid. 

According to Matthew P, Wilcox (2013), fluid stream can be categorized into two; turbulent and 

laminar flow. Motion of fluid elements in laminar flow is very organized and movement of fluid 

is in sheets that relatively slide on each other. The stream happens at very low speeds where there 

are just minor unsettling influences and low to no local speed variations. 

Turbulence convection is an irregular or disturbed flow. It behaves with a chaotic and 

unpredictable motion. Turbulent convection in a fluid heated from a plane horizontal layer below, 

called Rayleigh-Bénard convection, is of great importance in several industrial and natural 

processes. The fluid becomes turbulent past a specific temperature difference. 

Natural convection study in an enclosure has several engineering applications from natural space 

warming of household rooms to sections of engineering and atomic installations. Such as, this type 

of flows happens in material processing cooling of electronic equipment and building technology. 

Turbulent flows are characterized by four main features: diffusion, dissipation, three-

dimensionality and length scales. For numerical calculation of turbulent flows, an averaging of 

Navier-Stokes equations of motion is carried out with respect to time. This averaging leads to 

Reynolds Averaged Navier-Stokes equations (RANS). Additional terms with new variables occur 

in these partial differential equations because of the averaging. Consequently, there are suddenly 

more variables than equations. In order to close the motion equation system in this study, 𝑘 −

𝜔 turbulence modeling will be used. 

1.2 Problem statement 

Turbulent flows are characterized by diffusion, dissipation, three-dimensionality and length scales. 

Studies on the effect of aspect ratio of a rectangular enclosure on natural convection turbulence 

using standard k-ε model has been done. However, SST k-ω model performs better than k-ω and 

k-ε since it combines both k-ω and standard k-ε models by activating the standard k-ω model near 

the wall and the k-ε model in the free stream thus ensuring right model is applied all through the 
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flow field. Since k-ε is normally suitable for free-shear layer flows and k-ω is used where there are 

wall effects present. This made a requirement to use a better turbulence model that would be useful 

both near the wall and in the free stream of the enclosure. Thus, a study on a rectangular enclosure, 

with one wall at 323K and the opposite one with 303k and the rest being remaining adiabatic, 

modeled using SST k-ω was done to investigate the turbulence in natural convection with the 

aspect ratio of 2, 4,6 and 8. 

1.3 General objective 

To investigate turbulent convection in a rectangular enclosure using SST k-ω model 

1.4 Specific objectives 

i) To develop numerical solutions for solving the model problems. 

ii) To generate streamlines, isotherms and velocity magnitudes for different aspect ratio. 

iii) To investigate the impact of aspect ratio on natural convection. 

1.5 Significance of the Study 

Many real-world applications uses natural convection in rectangular enclosures. Free cooling of 

air is the usual industrial use of natural convection and occurs on small scales such as computer 

chip all the way to large scale process tools. Where an enclosure is cooled and heated from one 

vertical edge to the other, at a small temperature difference, there is presence of the flow. The flow 

may be different near the walls and in the free stream thus a significant to use a model, SST k-ω, 

that will take care of both conditions. The behavior of Vortices as aspect ratio changes done in this 

study plays a significant in brine exclusion 

1.6 Definition of terms 

Convection: is heat transfer through movement of the heated sections of a fluid. 

Aspect ratio: Proportion of length of isothermal wall to the gap between them 

Heat transfer: The thermal energy exchange between temperature by distributing heat and 

physical systems relying upon the pressure. 

Reynolds number: is the ratio of inertial forces to viscous forces within a fluid which is subjected 

to relative internal movement due to different fluid velocities. 

Laminar Flow: A system where the fluid stream is smooth and regular for values of Reynolds 

number of up to about 2100 
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Turbulent Flow: A system of stream characterized by chaotic property changes flow for values 

of Reynolds number of above 4000 

Streamlines: A path followed out by a massless component as it moves with the stream.  

Isotherms: An isotherm is the curve on a graph that connects points of equal temperature. 

Vortices: A region in the fluid medium where the flow is mostly rotating around an axis line. 

Mathematical Formulation: translating the real-world problem into the form of mathematical 

equations which could be solved 

Grashof number: a dimensionless number in fluid dynamics and heat transfer which 

approximates the ratio of the buoyancy to viscous force acting on a fluid 

Prandtl number: a dimensionless parameter used in calculations of heat transfer between a 

moving fluid and a solid body, 

Raleigh number: the product of the Grashof number and the Prandtl number. 

FLUENT: is a “Flow Modeling Software” owned by and distributed by ANSYS, Inc. It is utilized 

to demonstrate fluid flow inside a characterized geometry utilizing the standards of computational 

fluid dynamics. 
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CHAPTER TWO 

LITERATURE REVIEW 

Numerical studies have been done on the development of natural convection in an enclosure. The 

choice region is common in numerous applications, for example, electronics (e.g. cupboards), 

applied chemistry (e.g. storing reservoirs) and ecological control (e.g. rooms). 

Natural convection in rectangular enclosure cooled from the top limit while heated from one wall 

was studied by Aydin et al. (1999). They realized that the impact of Rayleigh number on heat 

transfer was more important when the enclosure is thin (ar> 1) and the effect of aspect ratio is 

higher when the Rayleigh number is high and the enclosure is tall. 

Betts & Bokhari (2000) found that stream fields and temperature to be closely two-dimensional, 

with the exception of anti-symmetric across the diagonal and near to the front and back walls of a 

tall differentially heated rectangular cavity. The partly conducting top and bottom give locally 

unsteady thermal stratification in the wall jet streams there, which develops the turbulence as the 

stream travels to the temperature-controlled plates. 

Peng & Davidson (2001) studied turbulent natural convection stream (Ra=1.58×109) in a restricted 

cavity with two differentially heated lateral boundaries. Large eddy simulation (LES) was used to 

investigate numerically. The mean stream in the cavity was described by steady thermal 

stratification and a moderately little turbulence level. 

Bilgen (2002) used numerical technique to study turbulent and laminar natural convection in 

enclosures with fractional partitions. Horizontal boundaries were adiabatic while the vertical ones 

were isothermal. Two dimensional equations of conservation of energy, momentum and mass, 

with the Boussinesq approximation were solved. 

A 3-D rectangular enclosure comprising of a convectional heater assembled into one wall and 

having an opening in the same wall study was done by Sigey et al. (2004). The heater was 

positioned under the opening and the rest of the walls were insulated. The heater location and 

dimensions were kept constant while the dimensions of the opening was varied and its location 

fixed. The localized heating and cooling initiates two limit sheets that collide in the area between 

the opening and the heater. They found that the enclosure was stratified into three sections: an 
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upper cold section, a warm lower section and a hot section in the area between the heater and the 

opening. 

High Grashof-number turbulent natural convection in the region of vertical edges with heat 

transmission was analyzed asymptotically by Hölling & Herwig (2005). They found near-wall 

limit layer had a completely turbulent external layer and a viscosity-influenced internal layer, like 

the structure of forced convection limit layers. 

Sharma et al. (2007) studied conjugate turbulent surface radiation and natural convection in 

rectangular enclosure cooled from other walls and heated from underneath, regularly experienced 

in Liquid Metal Fast Breeder Reactor (LMFBR) subsystems. The design contains the standard two 

equation k–ε turbulence model with physical limit conditions (no wall functions), along with the 

Boussinesq estimation, for the heat and stream transmission. As much as radiation is concerned, 

the radiosity – irradiation preparation for a transparent fluid of Prandtl number 0.7 was utilized. 

The conjugate coupling on the walls was taken care of by utilizing a fin type design. Based on the 

Rayleigh number was varied from 108 to 1012, the aspect ratio ranging from 0.5 to 2.0 and the 

thickness of the enclosure. 

The impacts of cavity aspect proportion, heat transmission qualities, depth of the exterior concrete 

beam, Rayleigh number (Ra) and exterior wall development materials on the stream were the key 

emphasis of the Ben-Nakhi & Mahmoud (2008) investigation. In their study of conjugate turbulent 

natural convection inside a building loft in the state of a rectangular enclosure limited by realistic 

walls, they found that the estimations of composite wall materials, Rayleigh number and loft aspect 

ratio have noteworthy impact on the stream function and temperature contours inside the 

enclosure, and the heat flux out of the room through the enclosure. 

Xamán et al. (2008) used glass-walled square cavity. The cavity was such a way that one upright 

glass wall, one upright isothermal wall and two horizontal adiabatic walls. Using a control volume 

method to obtain the numerical outcomes in the cavity where the conditions were set as: 750 W/m2 

continuous direct normal solar irradiation over the glass wall, 35 °C outside ambient temperature 

and 21 °C even temperature in the isothermal wall. They found that the flow design was 

asymmetric because of joint impact of radioactive exchange within the cavity and non-isothermal 

glass wall.  
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Oztop & Abu-Nada (2008) studied heat transmission and fluid stream because of buoyancy forces 

in a partly heated enclosure using nanofluids utilizing different kinds of nanoparticles. Flush heater 

was placed to the left upright edge of limited length and the temperature of the heater to be higher 

than that of right upright wall while other walls were insulated. The governing equations were 

solved using the finite volume method. Heat transmission was as well increased with increase in 

height of heater. It was discovered that the heater position influences the stream and temperature 

fields when utilizing nanofluids and that the heat transmission was less noticeable at high aspect 

ratio than at low aspect ratio. 

Braga, & de Lemos, (2009) did study on turbulent natural convection in a two-dimensional 

horizontal composite square cavity, cooled from the right side and isothermally heated at the 

opposite side and numerically analysed by use of finite volume technique. The composite square 

cavity was molded by three different regions, that is, solid, porous and clear region. They 

discovered that fluid starts to saturate the permeable medium for values of Ra more than 106. 

Nusselt number values demonstrated that for the range of Ra analysed, there is no noteworthy 

difference between laminar and turbulent models result. Comparison of impacts of Da, Ra and ks/kf 

on Nu showed that the solid phase properties have a more prominent impact in enhancing the 

general heat moved through the cavity. 

Turbulent natural convection in a rectangular enclosure having limited width heat-conducting 

edges at local heating at the base of the cavity was numerically studied by Kuznetsov et al. (2010). 

They carried out mathematical simulation in terms of the dimensionless RANS equations in stream 

function–vorticity designs. The design includes the standard two equation k–ε turbulence model 

with wall functions, alongside the Boussinesq estimation, for the heat and stream transmission.  

Safaei et al. (2011) carried out numerical study on turbulent mixed and laminar convection in a 

shallow water-filled enclosure by different turbulence approaches. They initially demonstrated 

laminar mixed convection inside rectangular enclosure with moving edge and aspect ratio of 10 

and after that the outcomes were related with other studies. The study was continued with turbulent 

flow using standard k-ε, RNG k-ε and RSM models for 𝑅𝑎 = 6 × 109 and Richardson numbers 

0.1 to 10. The outcomes demonstrated that turbulence strength relies upon the location. For 

instance, stream in the center of enclosure was turbulent and in limit layer and upright walls, the 
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stream was laminar. Heat transfer and turbulence flow was generally more than laminar stream 

because of initial high level of mixing. 

Chen & Du (2011) studied the impacts of aspect ratio, buoyancy forces ratio and thermal Rayleigh 

number on entropy generation of turbulent double-diffusive natural convection in a rectangle 

cavity. They concluded that the total entropy generation number (Stotal) rises with Rayleigh number, 

Stotal rises rapidly and linearly with buoyancy forces ratio and the relative total entropy generation 

rate because of diffusive irreversibility turn into dominant irreversibility and Stotal rises almost 

linearly with aspect ratio.  

Mahmoodi (2011) did heat and transmission mixed convection fluid stream in lid-driven 

rectangular enclosures filled with the Al2O3-water nanofluid. The right and left upright walls and 

upper horizontal wall of the enclosure were kept at a constant cold temperature Tc. The lower 

horizontal wall was kept at a constant hot temperature, with Th>Tc. The governing equations were 

solved by utilizing the finite volume technique and the SIMPLER algorithm. He found that at low 

Richardson values, an essential anticlockwise vortex was formed inside the enclosure and that for 

the range of the Richardson number considered, 10-1-101, increase in the volume fraction of the 

nanoparticles increased the average Nusselt number of the hot wall. It was too seen that the average 

Nusselt number of the hot wall of tall enclosures is higher to that of the shallow ones. 

Sigey (2012) solved equations governing natural convection in a square enclosure. One wall was 

heated and cooled with the rest adiabatic. Discretization of governing equations together with the 

boundary conditions was utilized using second order central difference approximations in space 

and first order in time. The energy and vorticity transport equations were solved to the stable state 

utilizing Sarmaski-Andreyev (1963) Alternative-Direct Implicit (ADI). He found that turbulent 

limit layers formed on the cold and hot end wall.  

Awuor (2013) studied performance of three numerical turbulence models in turbulent Convection 

Fluid Stream in an enclosure. The non-linear terms 𝑢𝑖𝑢𝑗 and θ𝑖𝑢 in the averaged energy and 

momentum equations respectively were modeled using the k− , k− and k−  SST models to 

close the governing equations. He found that k − − SST model performed better than both k− and 

k− models in the whole enclosure. The k − − SST was then used in a test case problem of heating 
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and cooling on the same wall and found that the room was stratified into three sections: warm 

lower section, hot section in the area between the window and heater and a cold upper section. 

Numerical study of natural convection surface and thermal radiation in a cubical cavity with a heat 

source situated at the base of the cavity with heat-conducting solid walls of fixed thickness was 

carried out by Martyushev & Sheremet (2014). Mathematical study in view of mathematical 

solution of the three-dimensional Boussinesq equations in the dimensionless parameters for 

instance temperature, vorticity vector and vector potential functions by finite difference technique 

was done and determined the effect scales of key parameters on the average Nusselt numbers. 

Finite Volume Method was used to study the radiation impact on turbulent and laminar mixed 

convection heat transmission of almost transparent medium in a rectangular enclosure by Goodarzi 

et al. (2014). The simulated results showed that for laminar and turbulent motion states, computing 

the radiation heat transmission significantly improved the heat transfer coefficient as well as the 

Nusselt number (Nu). The average Nusselt number and corresponding heat transmission rate were 

not noticeably influenced by Higher Richardson numbers. 

Wu. et al. (2015) investigated numerically the heat transmission and natural convective stream in 

a rectangular cavity full of heat-generating permeable medium. The right and left walls were 

partially cooled and heated by sinusoidal temperature profile and the bottom and top walls of 

enclosure were adiabatic. It was shown that periodic variations with negative and positive values 

show up in isotherms for solid and fluid phases, and periodicity rises with rise of N. 

Wu et al. (2015) did a mathematical study of stable non-Darcy natural convection heat 

transmission in rectangular cavity full of heat-generating permeable medium with partial cooling 

by utilizing local thermal non-equilibrium (LTNE) model. The cooling parts of right and left 

sidewalls of the cavity were kept at temperature T0 while the bottom and top walls of the enclosure, 

and also the inactive portions of its sidewalls, were kept insulated. The outcomes showed that the 

placement order of wall cooling significantly influence heat transmission rate and flow pattern. 

The comparison of fully cooled wall with partly cooled wall of the cavity produced a higher local 

Nusselt number for both solid and fluid phases. 

Zdanski et al. (2016) studied the impacts of small rectangular turbulence promoter on convection 

heat transmission. The time-averaged energy, linear momentum and mass conservation governing 
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equations together with the two-equation k–ε turbulence model were utilized. The focus of the 

work was on the evaluation of the global and local Nusselt numbers at the channel stepped wall. 

They discovered that the highest local Nusselt number was situated in the section where the 

turbulent diffusion was highest in the near wall section. 

A test investigation of stable buoyancy-driven convective heat transmission inside a slim triangular 

enclosure of aspect ratio 0.3175, between inclined cold wall and hot base plate while others wall 

being isothermal was investigated by Kumar et al. (2016). The Prandtl and Rayleigh numbers for 

various investigations were in the range 0.698 - 0.713 and 1779341 ≤ Ra ≤ 5559546 respectively. 

It was revealed that Nusselt number is a great function of Rayleigh number and fin spacing while 

fin distance has moderate impact.  

Hussen & Akeiber (2016) did mathematical analysis on radiative and convective heat transmission 

contrary to several partial floor heating in an enclosure. The temperature distribution in the heated 

places was found to be nearly similar to that of typical floor heating. But in the non-heated regions, 

air temperature varied by 6 °C (3.6 °C difference) between a point well above the floor and that 

close to the surface.  

There has been a lot of research on heat convection turbulence in enclosures but not of heating 

from one wall and cooling from the opposite wall while taking into consideration of the near wall 

shear and in the free stream. Thus, a motivation towards our study towards the gap in numerical 

study on effect of aspect ratio on turbulent convection in rectangular enclosure using SST k-ω 

model which will take care of conditions of both the free stream and along the walls. 
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CHAPTER THREE 

GOVERNING EQUATIONS 

3.1 Continuity equation 

Consider a control volume measuring 𝑑𝑥 × 𝑑𝑦 × 𝑑𝑧 

 

 

 

 

 

 

 

 

 

 

 

Let the mass density at P(x, y, z) be ρ (x, y, z). Thus, average mass density throughout dv 

Total mass = m = ∫𝜌𝑑𝑣 = ∫𝜌𝑑𝑥𝑑𝑦𝑑𝑧       3.1 

Assuming inside dv there is no mass sinks or sources, then, 

𝑑𝑚

𝑑𝑡
= rate upon which mass leaves or enters through surface ds 

The mass flux through the surface is ρV, where V represents velocity of the fluid. Thus, mass per 

unit time flowing through ds is  

𝜌𝑉 ⋅ 𝑑𝑠 = 𝜌𝑉 ⋅ �̂�𝑑𝑠          3.2 

where �̂� is the unit vector orthogonal to the surface. 

Total flow rate of mass out of the volume dv is 

∑ 𝜌𝑉 ⋅ 𝑑𝑠 = ∮ 𝜌𝑉 ⋅ 𝑑𝑠
𝑠𝐹𝑎𝑐𝑒𝑠 = ∮ 𝜌𝑉 ⋅ �̂�𝑑𝑠

𝑠
       3.3 

And it’s equivalent to−
𝑑𝑚

𝑑𝑡
, thus, 

𝑑𝑚

𝑑𝑡
=

𝑑

𝑑𝑡
∮ 𝜌𝑑𝑣 = −∮ 𝜌�⃗� ⋅ �̂�𝑑𝑠

𝑠𝑣
        3.4  

For fixed surface, derivative of total time within the volume integral can be taken as a partial 

derivative 

∫
∂𝜌

∂𝑡𝑣
𝑑𝑣 = −∮ 𝜌�⃗� ⋅ �̂�𝑑𝑠

𝑠
         3.5 

dz 

dy 

dx 

P (x, y, z) 

Fig. 3. 1 Control volume 
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By Gauss theorem,  

∮ 𝜌�⃗� ⋅ �̂�𝑑𝑠 = ∮ ∇ ⋅ (𝜌�⃗� )𝑑𝑣
𝑣𝑠

        3.6 

Thus substituting in equation (3.6) into (3.5), we get 

∫
∂𝜌

∂𝑡
𝑑𝑣 = −∫ ∇ ⋅ (𝜌�⃗� )𝑑𝑣

𝑣𝑣
         

= ∫ [
∂𝜌

∂𝑡
+ ∇ ⋅ (𝜌�⃗� )]

𝑣
𝑑𝑣 = 0         3.7 

Since it holds for any section and over any time interval, we conclude that the integrant in (3.7) 

must be identically be equal to zero, i.e., 

∂𝜌

∂𝑡
+ ∇ ⋅ (𝜌�⃗� ) = 0          3.8 

This is general equation of mass conservation. 

For incompressible flows 𝜌 is constant and equation 3.8 reduces to 

ρ∇�⃗� + �⃗� ∇𝜌 = 0 

ρ∇�⃗� = 0 

∇�⃗� = 0………………………………………………3.9 

For an incompressible flow, velocity field should be divergence free. 

Since �⃗�  is a velocity vector field, equation 3.9 can be written as; 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 
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3.2 Momentum conservation equation 

The equation results from Newton’s second law of motion 

𝐹 = Ma            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 2 small moving fluid component showing forces in x course 

The net force on fluid component equivalents to product of its acceleration and mass according to 

Newton’s second law on the moving fluid component. 

That is, 𝐹 = 𝑀𝑎 

Considering the x-component of the law, 

𝐹𝑥 = 𝑀𝑎𝑥            3.10 

Where, 

ax - x-component of acceleration 

Fx - x-component of force 

Surface force (FS) and body force (FB) are the main forces acting on the component 

Considering fluid component weight as the only body force and letting 𝑔   the body force per unit 

mass acting on the fluid component, with gx as the x-component, the weight of fluid component in 

the x-direction will be given by 

h 

g 

e 

d 

c b 

a 

 

 

 

 

 

 

 

dy 

dx 

dz 

z 

x 

y 

 

f 
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𝐹𝐵 = 𝜌𝑔𝑥(𝑑𝑥𝑑𝑦𝑑𝑧)          3.11 

Where 𝑑𝑥𝑑𝑦𝑑𝑧 is the volume of fluid component. 

The surface force due to stress exerted on the sides of the fluid elements are the shear stress, normal 

stress and pressure. 

The figure above shows the surface forces in x-course.  

On face abcd, we have one shear force in negative x - course, 𝜏𝑧𝑥𝑑𝑥𝑑𝑦and on the opposite face, 

the face efgh has a shear force of (𝜏𝑧𝑥 +
∂𝜏𝑧𝑥

∂𝑧
𝑑𝑧) 𝑑𝑥𝑑𝑦in the positive x - course. Similarly for face 

adhe, we have 𝜏𝑦𝑥𝑑𝑥𝑑𝑧acting in negative x - course and in the positive x - course we have 

(𝜏𝑦𝑥 +
∂𝜏𝑦𝑥

∂𝑦
𝑑𝑦)𝑑𝑥𝑑𝑧for the face bcgf. 

For the face perpendicular to x-axis, that is, abfe, we have pressure force 𝑃𝑑𝑦𝑑𝑧 acting in positive 

x-direction and normal stress 𝜏𝑥𝑥𝑑𝑦𝑑𝑧 in negative x-direction while for the opposite face cdhg we 

have the pressure (𝑃 +
∂𝑃

∂𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 acting against fluid element flow and normal shear 

(𝜏𝑥𝑥 +
∂𝜏𝑥𝑥

∂𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 which acts in the positive x - course. 

Thus, the sum of surface forces in x - course is 

𝐹𝑆 = [(𝜏𝑥𝑥 +
∂𝜏𝑥𝑥

∂𝑥
𝑑𝑥) − 𝜏𝑥𝑥] 𝑑𝑦𝑑𝑧 + [𝑃 − (𝑃 +

∂𝑃

∂𝑥
𝑑𝑥)] 𝑑𝑦𝑑𝑧

+ [(𝜏𝑦𝑥 +
∂𝜏𝑦𝑥

∂𝑦
𝑑𝑦) − 𝜏𝑦𝑥] 𝑑𝑥𝑑𝑧 

  + [(𝜏𝑧𝑥 +
∂𝜏𝑧𝑥

∂𝑧
𝑑𝑧) − 𝜏𝑧𝑥] 𝑑𝑥𝑑𝑦  

𝐹𝑆 = (−
∂𝑃

∂𝑥
+

∂𝜏𝑥𝑥

∂𝑥
+

∂𝜏𝑦𝑥

∂𝑦
+

∂𝜏𝑧𝑥

∂𝑧
)𝑑𝑥𝑑𝑦𝑑𝑧      3.12 

Thus, total forces in x - course Fx is obtained by summing equations 3.11 and 3.12 

𝐹𝑥 = 𝐹𝑆 + 𝐹𝐵 

𝐹𝑥 = (−
∂𝑃

∂𝑥
+

∂𝜏𝑥𝑥

∂𝑥
+

∂𝜏𝑦𝑥

∂𝑦
+

∂𝜏𝑧𝑥

∂𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 + 𝜌𝑔𝑥𝑑𝑥𝑑𝑦𝑑𝑧    3.13 

Considering the R.H.S. of equation 3.10, the mass of the component is constant and is given by; 

𝑚 = 𝜌𝑑𝑥𝑑𝑦𝑑𝑧          3.14 

The velocity components in the z, y and x directions of the fluid element is w, v and u respectively. 

I.e. 𝑤 =
𝑑𝑧

𝑑𝑡
,  𝑣 =

𝑑𝑦

𝑑𝑡
 𝑎𝑛𝑑 𝑢 =

𝑑𝑥

𝑑𝑡
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the rate of change of velocity is the acceleration of the fluid component thus, ax is the rate of change 

of u which is the acceleration component in the x-direction, thus, 

𝑎𝑥 =
𝑑𝑢

𝑑𝑡
 

Thus, 

𝐹𝑥 = 𝜌
𝑑𝑢

𝑑𝑡
𝑑𝑥𝑑𝑦𝑑𝑧          3.15 

Combining eqns. 3.13 and 3.15 and dividing throughout by 𝑑𝑥𝑑𝑦𝑑𝑧, we get 

𝜌
𝑑𝑢

𝑑𝑡
= −

∂𝑃

∂𝑥
+

∂𝜏𝑥𝑥

∂𝑥
+

∂𝜏𝑦𝑥

∂𝑦
+

∂𝜏𝑧𝑥

∂𝑧
+ 𝜌𝑔𝑥       3.16a 

Similarly, the y and z components becomes, 

𝜌
𝑑𝑣

𝑑𝑡
= −

∂𝑃

∂𝑦
+

∂𝜏𝑥𝑦

∂𝑥
+

∂𝜏𝑦𝑦

∂𝑦
+

∂𝜏𝑧𝑦

∂𝑧
+ 𝜌𝑔𝑦 and       3.16b 

𝜌
𝑑𝑤

𝑑𝑡
= −

∂𝑃

∂𝑧
+

∂𝜏𝑥𝑧

∂𝑥
+

∂𝜏𝑦𝑧

∂𝑦
+

∂𝜏𝑧𝑧

∂𝑧
+ 𝜌𝑔𝑧       3.16c 

Equations 3.16a, b and c are x, y and z component of equation of momentum. The equations are 

in non-conservation form since the fluid component is moving with the flow, and thus in honour 

of Englishman G. Stokes and Frenchman M. Navier, they are called the Navier-Stokes equations. 

Conservation form 

The left side of eq.3.16a can be rewritten by introducing the vector notation 

∇≡ 𝑖 
𝜕

𝜕𝑥
+ 𝑗 

𝜕

𝜕𝑦
+ �⃗� 

𝜕

𝜕𝑧
 

Thus, the left hand side of equation 3.16a can be written as 

𝜌
𝑑𝑢

𝑑𝑡
= 𝜌

∂𝑢

∂𝑡
+ 𝜌�⃗� ⋅ ∇𝑢          3.17 

Using the following derivative, 

∂(𝜌𝑢)

∂𝑡
= 𝜌

∂𝑢

∂𝑡
+ 𝑢

∂𝜌

∂𝑡
 

𝜌
∂𝑢

∂𝑡
=

∂(𝜌𝑢)

∂𝑡
− 𝑢

∂𝜌

∂𝑡
          3.18 

Using the divergence theorem, 

∇ ⋅ (𝜌𝑢�⃗� ) = 𝑢∇ ⋅ (𝜌�⃗� ) + (𝜌�⃗� ) ⋅ ∇𝑢 

𝜌�⃗� ⋅ ∇𝑢 = ∇ ⋅ (𝜌𝑢�⃗� ) − 𝑢∇ ⋅ (𝜌�⃗� )        3.19 

Replacing eqns. 3.18 and 3.19 into eq. 3.17, we get 

𝜌
𝑑𝑢

𝑑𝑡
=

∂(𝜌𝑢)

∂𝑡
− 𝑢

∂𝜌

∂𝑡
− 𝑢∇ ⋅ (𝜌�⃗� ) + ∇ ⋅ (𝜌𝑢�⃗� ) 
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𝜌
𝑑𝑢

𝑑𝑡
=

∂(𝜌𝑢)

∂𝑡
− 𝑢 [

∂𝜌

∂𝑡
+ ∇ ⋅ (𝜌�⃗� )] + ∇ ⋅ (𝜌𝑢�⃗� )      

 3.20 

Since the continuity equation is zero, hence the term in brackets in eqn. 3.20 is zero thus eqn. 3.20 

simplifies to; 

𝜌
𝑑𝑢

𝑑𝑡
=

∂(𝜌𝑢)

∂𝑡
+ ∇ ⋅ (𝜌𝑢�⃗� )         3.21 

Replacing eqn. 3.21 into eqn. 3.16a, we get 

∂(𝜌𝑢)

∂𝑡
+ ∇ ⋅ (𝜌𝑢�⃗� ) = −

∂𝑃

∂𝑥
+

∂𝜏𝑥𝑥

∂𝑥
+

∂𝜏𝑦𝑥

∂𝑦
+

∂𝜏𝑧𝑥

∂𝑧
+ 𝜌𝑔𝑥     

 3.22a 

Similarly, for Eqs. 3.16b and c we obtain, 

∂(𝜌𝑣)

∂𝑡
+ ∇ ⋅ (𝜌𝑣�⃗� ) = −

∂𝑃

∂𝑦
+

∂𝜏𝑥𝑦

∂𝑥
+

∂𝜏𝑦𝑦

∂𝑦
+

∂𝜏𝑧𝑦

∂𝑧
+ 𝜌𝑔𝑦     

 3.22b 

and 

∂(𝜌𝑤)

∂𝑡
+ ∇ ⋅ (𝜌𝑤�⃗� ) = −

∂𝑃

∂𝑧
+

∂𝜏𝑥𝑧

∂𝑥
+

∂𝜏𝑦𝑧

∂𝑦
+

∂𝜏𝑧𝑧

∂𝑧
+ 𝜌𝑔𝑧     3.22c 

The above equations are the conservation form of Navier-Stokes equations. 

 

3.3 The Energy Equation 

It results from first law of thermodynamics that states that the change in interior energy of a system 

is equivalent to the heat into the system less the work done by the system. 

Mathematically it is expressed as 

Δ𝑈 = 𝑄 − 𝑊 

Where W is the work done by the system, Q is the heat added to the system and Δ𝑈 is the change 

in internal energy. 

i.e.  

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒
𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑠𝑖𝑑𝑒

 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
=  

𝑁𝑒𝑡 𝑓𝑙𝑢𝑥 𝑜𝑓
ℎ𝑒𝑎𝑡 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

 +
Rate of work done

𝑜𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑛𝑑 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠

    ………….. 3.23 

We start by evaluating on moving fluid component, the rate of work done due to surface and body 

forces. It can be shown that the product of component of velocity in the direction of force and the 

force is equal to the rate of doing work by a force exerted on a body in motion. 



16 
 

 
 

Therefore, on the fluid component moving with speed V, the rate of work done by the body force 

is given by 𝜌𝑓 .𝑣 ( dx dy dz) 

 

Fig. 3. 3 Energy transitions related with an imperceptibly little, moving fluid component. 

We consider surface forces (pressure in addition to shear and normal stresses), acting in x-course 

(Figure 3.3). On the moving fluid component, the rate of work done by surface force in x - segment 

of speed u, duplicated by forces, for example, on abcd face, rate of doing work by 𝜏yxdxdz is 

u𝜏yxdxdz with other faces having same expressions.  

On fluid component, to acquire the total rate of doing work by surface force, it should be noted 

that negative work is done by forces in the negative x-course and positive work for positive x-

course.  

Considering the pressure force on the face 'bcgf' and 'adhe' in Figure 3.2, total rate of doing work 

by shear and pressure stress in x-course is given by 

[up – (𝑢𝑝 +
𝜕)(𝑢𝑝)

𝜕𝑥
)]dydz= − 

𝜕(𝑢𝑝)

𝜕𝑥
 dx dy dz, 
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 and 

[(𝑢𝜏𝑦𝑥 +
𝜕(𝑢𝜏𝑦𝑥

𝜕𝑦
) − 𝑢𝜏𝑦𝑥] 𝑑𝑥𝑑𝑧 =

𝜕(𝑢𝜏𝑦𝑥

𝜕𝑦
𝑑𝑥𝑑𝑦𝑑𝑧 

Bearing in mind all surface forces in figure 3.3, the net rate of doing work on the moving fluid 

component is;  

[−
𝜕(𝑢𝑝)

𝜕𝑥
+

𝜕(𝑢𝜏𝑥𝑥 )

𝜕𝑥
+

𝜕(𝑢𝜏𝑦𝑥 )

𝜕𝑥
+

𝜕(𝑢𝜏𝑧𝑥 )

𝜕𝑥
] 𝑑𝑥𝑑𝑦𝑑𝑧 

This expression gives just surface forces in x- course; comparable expressions can be acquired for 

x- and z-courses. Incorporating the body force input and considering all surface forces, net rate of 

doing work on moving fluid component becomes, 

{
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘𝑑𝑜𝑛𝑒
𝑜𝑛 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑢𝑒
𝑡𝑜 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠

} = 

[
 
 
 
 
 
 
 (

𝜕(𝑢𝑝)

𝜕𝑥
+

𝜕(𝑣𝑝)

𝜕𝑦
+

𝜕(𝑤𝑝)

𝜕𝑧
) +

𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑢𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑢𝜏𝑧𝑥)

𝜕𝑧
+

𝜕(𝑣𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑣𝜏𝑧𝑦)

𝜕𝑧
+

𝜕(𝑤𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑤𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑦)

𝜕𝑧 ]
 
 
 
 
 
 
 

 dxdydz + 𝜌𝑓 . 𝑣 …………………3.24 

We now turn to the second term of equation (3.23), that is, net heat motion into the component. 

The volumetric warming causes heat transition, for example, ingestion or outflows of radiation, 

heat exchange over the surface because of temperature inclinations, that is, thermal conduction. 

We characterize q as the rate of accumulation of volumetric heat for each unit mass. As prior 

defined the mass of fluid component in motion in 𝜌𝑑𝑥𝑑𝑦𝑑𝑧,  thus, we then acquire;   

  {
𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 ℎ𝑒𝑎𝑡𝑖𝑛𝑔

𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
} = 𝜌𝑞𝑑𝑥𝑑𝑦𝑑𝑧…………………………….3.25 

In Figure 3.3, the heat exchanged into a moving fluid by thermal conduction component crosswise 

over face 'adhe' is qxdxdydz where qx is heat moved in x-course per unit area per unit time by 

thermal conduction. The heat exchanged out of the component crosswise over face 'bcgf' is,  

[�̇�𝑥 + (𝜕 𝑞𝑥 𝜕𝑥⁄ )𝑑𝑥]𝑑𝑦𝑑𝑧, 

Therefore, the net moved heat by thermal conduction in the x-course into the fluid component is; 
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[�̇�𝑥 − (�̇�𝑥 +
𝜕𝑞𝑥

𝜕𝑥
)𝑑𝑥] 𝑑𝑦𝑑𝑧 =−

𝜕�̇�𝑥

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 

Considering heat exchanging the y-direction over other faces in fig 3.3, we acquire, 

{
Fluid component heating
by thermal conductivity

} =−(
𝜕�̇�𝑥

𝜕𝑥
+

𝜕�̇�𝑦

𝜕𝑦
+

𝜕�̇�𝑧

𝜕𝑧
) dx dy dz….………………………………3.26 

Summing up eqns (3.25) and (3.26), gives the net heat flux into the element; 

{
Fluid component heating
by thermal conductivity

}=[𝜌�̇� − (
𝜕�̇�𝑥

𝜕𝑥
+

𝜕�̇�𝑦

𝜕𝑦
+

𝜕�̇�𝑧

𝜕𝑧
)] dx dy dz …………………………..3.27 

Local temperature corresponds to heat exchange by thermal conduction; 

�̇�𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
;           𝑞�̇� = −𝑘

𝜕𝑇

𝜕𝑦
;         �̇�𝑧 = −𝑘

𝜕𝑇

𝜕𝑧
; 

Where 𝑘 is the thermal conductivity. 

Substituting these in equation (3.3.5) we have,  

{
Fluid component heating
by thermal conductivity

}=[𝜌𝑞 −
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
)] dx dy dz………….3.28 

At last, we consider time rate of change of energy inside fluid component. Moving fluid aggregate 

energy for each unit mass is the entirety of its kinetic energy for each unit mass, 𝑉2/2 and inner 

energy per unit mass, e. Thus, aggregate energy is 𝑒 + 𝑉2/2. Since the fluid component is in 

motion, the time-rate-of-change of energy for each unit mass is given by significant derivatives. 

Taking fluid component mass as 𝜌𝑑𝑥𝑑𝑦𝑑𝑧, we have; 

{
Rate of change of

energy inside
the fluid element

}=𝜌
𝐷

𝐷𝑡
(𝑒 +

𝑉2

2
) 𝑑𝑥𝑑𝑦𝑑𝑧 ………………………………………………..3.29 

The last type of the energy is gotten by substituting eqns. (3.24), (3.28) and (3.29) into equation 

(3.23), obtaining;  
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𝜌
𝐷

𝐷𝑡
(𝑒 +

𝑉2

2
) = 𝜌𝑞 +

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) − (

𝜕[𝑢𝑝]

𝜕𝑥
+ 𝜕

[𝑣𝑝]

𝜕𝑦
+

𝜕[𝑤𝑝]

𝜕𝑧
) +

𝜕[𝑢𝜏𝑥𝑥]

𝜕𝑥
+

𝜕[𝑢𝜏𝑦𝑥]

𝜕𝑦
+

𝜕[𝑢𝜏𝑧𝑥]

𝜕𝑦
+

𝜕[𝑣𝜏𝑥𝑦]

𝜕𝑥
+

𝜕[𝑣𝜏𝑦𝑦]

𝜕𝑦
+

𝜕[𝑣𝜏𝑧𝑦]

𝜕𝑦
+

𝜕[𝑤𝜏𝑥𝑧]

𝜕𝑥
+

𝜕[𝑤𝜏𝑦𝑧]

𝜕𝑦
+

𝜕[𝑤𝜏𝑧𝑧]

𝜕𝑦
+ 𝜌

𝑓.
→

𝑣
→………………….…..….3.30 

This is the energy equation in non-conservation form. It’s worth to note that it’s in form of the 

total energy, (𝑒 +
𝑣2

2
). Normally, the equation is written such that it involves the internal energy e 

which is derived as; 

Rewriting equations 3.22 a, b and c as from Navier stoke, in non-conservative form, we have; 

𝜌
𝐷𝑢

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝜌𝑓𝑥 , 

𝜌
𝐷𝑣

𝐷𝑡
= −

𝜕𝑝

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑓𝑦 ,  ………………………………………..3.31 

𝜌
𝐷𝑤

𝐷𝑡
= −

𝜕𝑝

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+ 𝜌𝑓𝑧 . 

Multiplying each of the equations, equation (3.31) by u, v, and w respectively,  

ρ
𝐷(

𝑢2

2
)

𝐷𝑡
= −𝑢

𝜕𝑝

𝜕𝑥
+ 𝑢

𝜕𝜏𝑥𝑥

𝜕𝑥
+ 𝑢

𝜕𝜏𝑦𝑥

𝜕𝑦
+ 𝑢

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝜌𝑢𝑓𝑥 , …………………………………..3.32a 

ρ
𝐷(

𝑉2

2
)

𝐷𝑡
= −𝑣

𝜕𝑝

𝜕𝑦
+ 𝑣

𝜕𝜏𝑥𝑦

𝜕𝑥
+  𝑣

𝜕𝜏𝑦𝑦

𝜕𝑦
+ 𝑣

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑣𝑓𝑦 ,……………………………….…….3.32b 

ρ
𝐷(

𝑉2

2
)

𝐷𝑡
= −𝑤

𝜕𝑝

𝜕𝑦
+ 𝑤

𝜕𝜏𝑥𝑦

𝜕𝑥
+ 𝑤

𝜕𝜏𝑦𝑦

𝜕𝑦
+ 𝑤

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑣𝑓𝑧 ,……………………….……….…..3.32c 

Adding equations (3.32 a,b and c), and noting that 𝑢2+ 𝑣2+𝑤2=𝑉2, we obtain; 

𝜌
𝐷𝑉2 2⁄

𝐷𝑡
= −𝑢

𝜕𝑝

𝜕𝑥
− 𝑣

𝜕𝑝

𝜕𝑦
− 𝑤

𝜕𝑝

𝜕𝑧
+ 𝑢 (

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
) + 𝑣 (

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
) + 𝑤 (

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
) + 𝜌(𝑢𝑓𝑥 + 𝑣𝑓𝑦 + 𝑤𝑓𝑧)……………………………………………………………..…………………..3.33 

Subtracting equation (3.33) from equation (3.30), noting that 𝜌𝑓.⃗⃗⃗  𝑣  = 𝜌(𝑢𝑓𝑥 + 𝑣𝑓𝑦  +𝑤𝑓𝑧) 
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We have; 

𝜌
𝐷𝑒

𝐷𝑡
= 𝜌𝑞 +

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) − 𝑝 (

𝜕𝑢

𝜕𝑥
+ 

𝜕𝑣

𝜕𝑦
+ 

𝜕𝑤

𝜕𝑧
) + 𝜏𝑥𝑥

𝜕𝑢

𝜕𝑥
+ 𝜏𝑦𝑥

𝜕𝑢

𝜕𝑦
+

𝜏𝑧𝑥
𝜕𝑢

𝜕𝑧
+ 𝜏𝑥𝑦

𝜕𝑣

𝜕𝑥
+ 𝜏𝑦𝑦

𝜕𝑣

𝜕𝑦
+ 𝜏𝑧𝑦

𝜕𝑤

𝜕𝑧
+ 𝜏𝑥𝑧

𝜕𝑤

𝜕𝑥
+ 𝜏𝑥𝑧

𝜕𝑤

𝜕𝑥
+ 𝜏𝑦𝑧

𝜕𝑤

𝜕𝑦
+ 𝜏𝑧𝑧

𝜕𝑤

𝜕𝑧
   …………………………3.34 

In terms of internal energy, equation (3.34) is the energy equation. Note that it does not explicitly 

contain the body force when its written in terms of e, since the terms have cancelled. Still equation 

(3.34) is in non-conversation form. We note that 

𝜏𝑥𝑦= 𝜏𝑦𝑥= 𝜏𝑥𝑧= 𝜏𝑧𝑥= 𝜏𝑦𝑧= 𝜏𝑧𝑦 , thus rewriting equation (3.34) we get, 

𝜌
𝐷𝑒

𝐷𝑡
 =    𝜌𝑞 +

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) − 𝑝 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝜏𝑥𝑥

𝜕𝑢

𝜕𝑥
+ 𝜏𝑦𝑦

𝜕𝑣

𝜕𝑦
+

𝜏𝑧𝑧
𝜕𝑤

𝜕𝑧
+𝜏𝑦𝑥 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) +  𝜏𝑧𝑥 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) + 𝜏𝑧𝑦 (

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)………………………………... 3.35 

Using the definitions of normal the viscous stress and shear stress given (3.35) becomes, 

𝜌
𝐷𝑒

𝐷𝑡
= 𝜌𝑞 +

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) − 𝑝 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝜆 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)
2

+

𝜇 [2 (
𝜕𝑢

𝜕𝑥
)
2

+ 2(
𝜕𝑣

𝜕𝑦
)
2

+ 2(
𝜕𝑤

𝜕𝑧
)
2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)
2

]……………. 3.36 

Equation (3.36) is a form of energy equation completely in terms of flow-field variables. Same 

replacement can be made into equation (3.30). In conservation form, the energy equation can be 

found as follows; 

Considering the LHS of the equation (3.36) and from substantial derivative definition: 

𝜌
𝐷𝑒

𝐷𝑡
= 𝜌

𝜕𝑒

𝜕𝑡
+ 𝜌𝑉 ∙ ∇𝑒,……………………………………………………………………...3.37 

𝜕(𝜌𝑒)

𝜕𝑡
= 𝜌

𝜕𝑒

𝜕𝑡
+ 𝑒

𝜕𝜌 

𝜕𝑡
Or  𝜌

𝜕𝑒

𝜕𝑡
=

𝜕(𝜌𝑒)

𝜕𝑡
− 𝑒

𝜕𝜌

𝜕𝑡
……….………………………………………..3.38 

From the vector identity regarding divergence of the product of a vector and a scalar, 

∇ ∙ (𝜌𝑒�⃗� ) = 𝑒∇ ∙ (𝜌�⃗� ) + 𝜌�⃗� ∙ 𝑒∇.………………………………………………………….3.39 

Substitute equations (3.38) and (3.39) into equation (3.37) we have; 
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𝜌
𝐷𝑒

𝐷𝑡
=

𝜕(𝜌𝑒)

𝜕𝑡
− 𝑒 [

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�⃗� )] + ∇ ∙ (𝜌𝑒�⃗� )……………………………………………..3.40 

The expression in square brackets in equation (3.40) is zero 

Thus, eqn (3.40) becomes 

𝜌
𝐷𝑒

𝐷𝑡
= 

𝜕(𝜌𝑒)

𝜕𝑡
 + ∇. (𝜌𝑒�⃗� )……………………………………………………..……………..3.41 

 Replacing eqn (3.41) into eqn (3.36), we get 

𝜕(𝜌𝑒)

𝜕𝑡
+ ∇. 𝜌 = 𝜌𝑞 +

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) − 𝑝 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝜆 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)
2

+ 𝜇 [2 (
𝜕𝑢

𝜕𝑥
)
2

+ 2(
𝜕𝑣

𝜕𝑦
)
2

+ 2(
𝜕𝑤

𝜕𝑧
)
2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)
2

]……...3.42 

Equation (3.42) is written in terms of the internal energy and is the energy equation in conservation 

form. 

Similarly, in form of total energy, the conservation form of energy equation, can be written as; 

𝜕

𝜕𝑡
[𝜌 (𝑒 +

𝑣2

2
)] + 𝛻. [𝜌 (𝑒 +

𝑣2

2
𝑣 )] = 𝜌𝑞 +

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) −

𝜕(𝑢𝑝)

𝜕𝑥
−

𝜕(𝑣𝑝)

𝜕𝑦
−

𝜕(𝑤𝑝)

𝜕𝑧
+

𝜕(𝑢𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑢𝜏𝑧𝑥)

𝜕𝑧
+

𝜕(𝑣𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑣𝜏𝑧𝑦)

𝜕𝑧
+

𝜕(𝑤𝜏𝑥𝑧)

𝜕𝑥
+

𝜕(𝑤𝜏𝑦𝑧)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
+ 𝜌𝑓.⃗⃗⃗  𝑉.⃗⃗  ⃗  

In Cartesian coordinate system, the governing equations for incompressible fluid flow become; 

Mass conservation (continuity equation) equation 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0  

Momentum (Navier stokes) equations 

X-direction:  

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝐹𝑋 −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) 
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Y-direction:  

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝐹𝑌 −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) 

Z-direction:  

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = 𝐹𝑍 −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) 

Energy equation 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2) + μΦ {2 [(
∂u

∂x
)
2

+ (
∂v

∂y
)
2

+ (
∂w

∂z
)
2

] +

(
∂v

∂x
+

∂u

∂y
)
2

+ (
∂w

∂y
+

∂v

∂z
)
2

+ (
∂u

∂z
+

∂w

∂x
)
2

}  

3.4 Reynolds Decomposition 

The statistical averaging is necessary to estimate random fluctuations for time dependent nature of 

turbulence with extensive variety of scales. 

This is a mathematical method that separates averaged and fluctuating part of the quantity, for 

instance, 𝑢 = �̅� + �̀� where �̅� denotes time averaged of u known as steady part and  �̀� as the 

perturbations or fluctuating part. It lets us simplify the Navier Stokes Equations by replacing the 

sum of the fluctuating and steady part to the velocity profile and taking the average value. The 

equation that results comprises a non-linear called Reynolds stress which gives turbulence. 

Statistical averaging of differential equations 

The earliest attempts at developing Mathematical description the closure problem was performed 

by Boussinesq (1877) with introduction of concept of the eddy viscosity. The origin of time 

averaging NS equation dates back to the late 19th century when Reynolds (1895) published results 

from his research on turbulence. 

The differential equations of energy, momentum and mass balances express fundamental physical 

laws and therefore hold for turbulent flow. If all the perturbations acting on the flow can be 

mathematically modeled, then these equations can be solved for the flow properties e.g. pressure 
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and velocity. An easier task is to solve time averaged versions of these equations in which some 

of the fluctuation contributions are averaged out. 

𝑢 = �̅� + �̀�………………………...…………………………………………………………3.4.1a 

𝑣 = �̅� + �̀�………………………...…………………………………………………………3.4.1b 

𝑝 = �̅� + �̀�………………………...…………………………………………………………3.4.1c 

𝜌 = �̅� + �̀�………………………...…………………………………………………………3.4.1d 

𝑇 = �̅� + �̀�………...……………...…………………………………………………………3.4.1e 

And time averaged rules 

1

𝑇
∫ 𝑢𝑑𝑡

𝑇

0
= �̅� And            1

𝑇
∫ �̀�𝑑𝑡

𝑇

0
= �̅̀�=0 

1

𝑇
∫ 𝑣𝑑𝑡

𝑇

0
= 𝑣 ̅And  1

𝑇
∫ �̀�𝑑𝑡

𝑇

0
= �̅̀�=0 

1

𝑇
∫ 𝑝𝑑𝑡

𝑇

0
= 𝑝 ̅And  1

𝑇
∫ �̀�𝑑𝑡

𝑇

0
= �̅̀�=0 

1

𝑇
∫ 𝜌𝑑𝑡

𝑇

0
= 𝜌 ̅And  1

𝑇
∫ �̀�𝑑𝑡

𝑇

0
= �̅̀�=0 

With T being a large interval of time. 

The following rules as well apply during time averaging; 

𝑓=𝑓,   𝑓 + 𝑔 = 𝑓 + 𝑔,  𝑓. 𝑔=𝑓.̅ �̅� ,  

𝜕𝑓

𝜕𝑠

̅
=

𝜕�̅�

𝜕𝑥
, ∫𝑓𝑑𝑠̅̅ ̅̅ ̅̅ ̅=∫𝑓̅ 𝑑𝑠,  𝑓. 𝑔 ≠ 𝑓. 𝑔 

Time averaged equation of continuity 

Substituting 3.4.1b and 3.4.1d in 3.8 and time average, we obtain 

𝜕(�̅�+�̀�)

𝜕𝑡
+ ∇. (�̅� + �̀�)(�̅� + �̀�)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 0…………………....……………………………………….3.4.2 

This gives 
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𝜕(�̅�+�̀�)

𝜕𝑡
+ ∇. (𝜌𝑣̿̿̿̿ + �̅��̀�̅̅̅̅ + 𝜌�̀̅�̅̅̅̅ + �̀��̀�̅̅̅̅ ) = 0…………………...…………………………………3.4.3 

But �̅��̀�̅̅̅̅  , �̀� 𝑎𝑛𝑑 𝜌�̀̅�̅̅̅̅  𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜 𝑎𝑛𝑑 𝜌𝑣̿̿̿̿ = �̅��̅� 

So equation 3.4.3 becomes 

∇. �̅�=0 (for incompressible fluid)……………………...……………………………….…3.4.4 

In Cartesian plane coordinate system, 3.4.4 becomes 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 = 0 

Time averaged momentum equation 

For a Newtonian, incompressible and with a constant viscosity fluid, Navier stokes equation 3.22 

a and b we have; 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑣. ∇𝑣) = 𝐹𝑖 − ∇𝑝 + 𝜇∆𝑣……………………...………………….………………….3.4.5 

Substituting equations 3.4.1b and 3.4.1c in 3.4.5 and time averaging, we get 

𝜌 [
𝜕(�̅� + �̀�)

𝜕𝑡
+ (�̅� + �̀�). ∇(�̅� + �̀�)]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝐹𝑖 − ∇(�̅� + �̀�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜇∆(�̅� + �̀�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

On working out, we get 

𝜌 [
𝜕(�̅� + �̀�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑡
+ �̅�. ∇�̅�̅̅ ̅̅ ̅̅ + �̅�. ∇�̀�̅̅ ̅̅ ̅̅ + �̀�∇�̅�̅̅ ̅̅ ̅ + �̀�. ∇�̀�̅̅ ̅̅ ̅̅ ] = 𝐹𝑖 − ∇�̅�̅̅̅̅ + 𝜇∆�̿� + 𝜇∆�̅̀� 

Which gives 

𝜌 [
𝜕�̅�

𝜕𝑡
+ �̅�. ∇�̅� + �̀�. ∇�̀�̅̅ ̅̅ ̅̅ ] = 𝐹𝑖 − ∇�̅�̅̅̅̅ + 𝜇∆�̅�………………...………………………………3.4.6 

Where�̅�. ∇�̀�̅̅ ̅̅ ̅̅ , �̀�∇�̅�̅̅ ̅̅ ̅,�̀�,̅ �̅̀�,�̅̀� =0 

And 
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∇. �̅�=0 

𝜌 [
𝜕�̅�

𝜕𝑡
+ �̅�. ∇�̅� + ∇. �̀��̀�̅̅ ̅̅ ̅̅ ] = 𝐹𝑖 − ∇�̅�̅̅̅̅ + 𝜇∆�̅� 

Which gives; 

𝜌 [
𝜕�̅�

𝜕𝑡
+ �̅�. ∇�̅�] = 𝐹𝑖 − ∇�̅�̅̅̅̅ + 𝜇∆�̅� − ∇. ρ�̀��̀�̅̅ ̅̅ ̅̅ ̅̅ …………………………………………………3.4.7 

∇. ρ�̀��̀�̅̅ ̅̅ ̅̅ ̅̅  𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑟𝑒𝑦𝑛𝑜𝑙𝑑 𝑠𝑡𝑟𝑒𝑠𝑠……………………...……………………………………3.4.8 

In Cartesian plane coordinate system, the time averaged NS equations for all direction becomes; 

X-direction:  

𝜌 (
𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = 𝐹𝑋 −

𝜕�̅�

𝜕𝑥
+ 𝜇 (

𝜕2�̅�

𝜕𝑥2
+

𝜕2�̅�

𝜕𝑦2
+

𝜕2�̅�

𝜕𝑧2
) − 𝜌 (

𝜕�̀��̀�

𝜕𝑥
+

𝜕�̀��̀�

𝜕𝑦
+

𝜕�̀��̀�

𝜕𝑧
) 

Y-direction; 

𝜌 (
𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = 𝐹𝑌 −

𝜕�̅�

𝜕𝑦
+ 𝜇 (

𝜕2�̅�

𝜕𝑥2
+

𝜕2�̅�

𝜕𝑦2
+

𝜕2�̅�

𝜕𝑧2
) − 𝜌 (

𝜕�̀��̀�

𝜕𝑥
+

𝜕�̀��̀�

𝜕𝑦
+

𝜕�̀��̀�

𝜕𝑧
) 

Z-direction; 

𝜌 (
𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = 𝐹𝑍 −

𝜕�̅�

𝜕𝑧
+ 𝜇 (

𝜕2�̅�

𝜕𝑥2 +
𝜕2�̅�

𝜕𝑦2 +
𝜕2�̅�

𝜕𝑧2) − 𝜌 (
𝜕�̀��̀�

𝜕𝑥
+

𝜕�̀��̀�

𝜕𝑦
+

𝜕�̀��̀�

𝜕𝑧
)  

Time averaged energy equation 

Substituting 3.4.1a, 3.4.1b, 3.4.1c &3.4.1e in 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
) + Φ 

We obtain 

𝜌𝐶𝑝 (
𝜕(�̅�+�̀�)

𝜕𝑡
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑥
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑦
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑧
) = 𝑘 (

𝜕2(�̅�+�̀�)

𝜕𝑥2
+

𝜕2(�̅�+�̀�)

𝜕𝑦2
+

𝜕2(�̅�+�̀�)

𝜕𝑧2
) + (Φ̅ + Φ̀) ………………………………………………………………………...3.4.9 



26 
 

 
 

Time averaging 3.4.9 

𝜌𝐶𝑝 (
𝜕(�̅�+�̀�)

𝜕𝑡
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑥
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑦
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑧
)= 

𝑘 (
𝜕2(�̅�+�̀�)

𝜕𝑥2
+

𝜕2(�̅�+�̀�)

𝜕𝑦2
+

𝜕2(�̅�+�̀�)

𝜕𝑧2
) + (Φ̅ + Φ̀)………………………………………..………3.4.10 

These yields 

𝜌𝐶𝑝 (
𝜕(�̅�+�̀�)

𝜕𝑡
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑥
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑦
+ (�̅� + �̀�)

𝜕(�̅�+�̀�)

𝜕𝑧
) = 𝑘 (

𝜕2(�̅�+�̀�)

𝜕𝑥2 +
𝜕2(�̅�+�̀�)

𝜕𝑦2 +

𝜕2(�̅�+�̀�)

𝜕𝑧2 ) + (Φ̅ + Φ̀)……………………...……………………………….…………..……3.4.11 

Using the time averaged rules we get the following; 

𝜌𝐶𝑝 (
𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = 𝑘 (

𝜕2�̅�

𝜕𝑥2 +
𝜕2�̅�

𝜕𝑦2 +
𝜕2�̅�

𝜕𝑧2) −
𝜕𝑐𝑝�̀��̀�̅̅ ̅̅

𝜕𝑥𝑖
+Φ̅…………………..……3.4.12 

𝜕𝑐𝑝�̀��̀�𝑖
̅̅ ̅̅ ̅

𝜕𝑥𝑖
 represent the turbulent heat fluxes i.e. perturbations of velocity and temperature  

The stress tensor in turbulent flow  

Equation 3.4.7 can be written in tensor form as 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= 𝐹𝑖 −

𝜕�̅�

𝜕𝑥𝑖
+ 𝜇∆𝑢𝑖 − 𝜌 (

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑖
) ……………………...…………………………….3.4.13 

Where 𝜇∆𝑢�̅� − 𝜌 (
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑖
)=𝜇

𝜕

𝜕xj
(

𝜕𝑢𝑖

𝜕𝑥𝑗
) − 𝜌

𝜕

𝜕𝑥𝑗
𝑢𝑖𝑢𝑗  

     =
𝜕

𝜕xj
(𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝜌𝑢𝑖𝑢𝑗) 

The term in brackets in the above equation is known as total shear stress expressed as 𝜏𝑖𝑗. 

Equation 3.4.7 can be written as  



27 
 

 
 

𝜌
𝐷𝑢𝑖̅̅ ̅

𝐷𝑡
= 𝐹𝑖 −

𝜕�̅�

𝜕𝑥𝑖
+

𝜕

𝜕xj
𝜏𝑖𝑗.…………………………………………………………………..3.4.14 

With the approach of Eddy Viscosity principle, equation3.4.14 is referred as Reynolds Averaged 

Navier Stokes equation (RANS).  

And  

𝜏𝑖𝑗 = 𝜇
𝜕𝑢𝑖

𝜕xj
+ 𝜌 (𝑉𝑇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) − 2

3⁄ 𝑘𝛿𝑖𝑗)………………………………………………3.4.15 

Where 𝛿𝑖𝑗 𝑖𝑠 𝑘𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑑𝑒𝑙𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 𝑉𝑇 𝑖𝑠 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑒𝑑𝑑𝑦 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

3.5 Approach of Boussinesq 

A relative old approach to this principle of eddy viscosity, which in 1877 was formulated by 

Boussinesq and is still the basis of many turbulence models (Rodi 1993). 

−�̀�𝑖�̀�𝑗=𝑉𝑇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) − 2

3⁄ 𝑘𝛿𝑖𝑗………………………………………………….………3.4.16 

Where k is kinetic energy turbulence defined as 

𝑘 = 1
2⁄ (𝑢2̅̅ ̅ + 𝑣2̅̅ ̅ + 𝑤2̅̅ ̅̅ )………………………………………………………………..…3.4.17 

𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑒𝑑𝑑𝑦 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦, 𝑉𝑇, depends on the degree of turbulence i.e. it varies within the fluid 

flow and depending on the flow condition. The approach of calculating eddy viscosity 𝑉𝑇 is known 

as turbulence modeling. 

Applications and Approaches for turbulence modeling 

The zeroth models, following the approach of Boussinesq (1877) assume that flow of velocity is 

proportional to turbulent stresses. In one equation model additional p.d.e for velocity scale is used 

for turbulence. Another p.d.e for length scale is added for two equation models. This group also 

includes K-휀 and K-𝜔 models. Approaches to determine the turbulence eddy viscosity provides 

the described closer models zeroth, first and second order.  
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3.6 Shear Stress Transport k-ω Model 

It’s a two-equation eddy – viscosity model. It combines the standard k-ω and k- 휀 models. It 

activates k- 휀 model in the free stream and standard k-ω model near the wall. This makes sure that 

the suitable model is applied all through the stream field. 

The transport equations of SST k-ω model are; 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑗
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛤𝑘

𝑑𝑘

𝑑𝑥𝑗
) + 𝐺�̃� − 𝑌𝑘 + 𝑆𝑘  

And 

𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑗

(𝜌𝜔𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(𝛤𝜔

𝑑𝜔

𝑑𝑥𝑗
) + 𝐺𝜔 − 𝑌𝜔 + 𝑆𝜔 + 𝐷𝜔 

𝐺�̃� = 𝑚𝑖𝑛(𝐺𝑘, 10𝜌𝛽∗𝑘𝜔) - reproduction of turbulent kinetic energy owed to average velocity 

gradients where 𝐺𝑘 = −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ 𝜕𝑢𝑗

𝜕𝑥𝑖
  

𝐺𝜔 =
𝛼

𝑣𝑡
𝐺𝑘 is the generation of ω 

𝐷𝜔 denotes the cross-diffusion term. 

𝑌𝑘 and 𝑌𝜔 denotes the dissipation of k and ω due to turbulence. 

𝛤𝑘 and 𝛤𝜔 denotes the effective diffusivity of k and ω respectively. 

For the SST k-ω model, the effective diffusivities are given by 

𝛤𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
  and 𝛤𝜔 = 𝜇 +

𝜇𝑡

𝜎𝜔
 

Where; 

𝑆𝑘 and 𝑆𝜔 are user-defined source terms. 

𝜎ω &  𝜎k are turbulent Prandtl numbers for ω and k correspondingly. 

Constants are determined from experiment and their values are as per the table 3.1 below. 
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Table 3. 1 Turbulence model constants 

𝜎𝑘,1 1.176 

𝜎𝜔,1 2.0 

𝜎𝑘,2 1.0 

𝜎𝜔,2 1.168 

𝛼1 0.31 

𝛽𝑖,1 0.075 

𝛽𝑖,2 0.0828 

𝜶∞
∗  1 

𝛼∞ 0.52 

𝛼0 
1

9
 

𝜷∞
∗  0.09 

𝑅𝛽 8 

𝑅𝑘 6 

𝑅𝜔 2.95 

휁∗ 1.5 

𝑀𝑡𝑜 0.25 
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CHAPTER FOUR 

4.1 Mathematical Formulation 

Figure 4.1 demonstrates a graphic outline of the issue under thought and the coordinate structure. 

Considering a 2D rectangular structure of width W and height H, where the left vertical 

temperature is kept at Th and the right at Tc, Th>Tc. No heat stream is accepted at the upper and 

lower wall (adiabatic). The walls are unbending and no – slip circumstances are enforced at the 

limits.  

 

Fig. 4. 1 Geometry of the problem 

4.2 Set of Governing equations 

The representing equations in two dimensional rectangular directions; 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0…………………………………………………………………………………….4.1 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)……………………………………,,,,,,,…………4.2 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝐹𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)……………………………………………………4.3 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) + Φ……………….……………………….………4.4 

Where 

Y

y 

X 

Z 
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Φ = μ {2 [(
∂u

∂x
)
2

+ (
∂v

∂y
)
2

] + (
∂v

∂x
+

∂u

∂y
)

2

} 

These conditions are legitimate for the present issue; despite that, density is a component of 

temperature. To change over the issue into an even state, Boussinesq estimation is usually utilized. 

Bousinesq estimation for limit layer streams and the current issue are depicted in the following 

two segments.  

4.3. Limit Layer Streams Boussinesq Approximations 

As constrained convection, the conditions that portray energy and momentum move in free 

convection starts from linked conservation ideologies. The distinction among the two streams is 

that, buoyancy forces play a noteworthy part in free convection. It is such powers that, truth be 

told, maintain the stream (Incropera and Dewitt 2002).  

Adopting uneven, 2-D, consistent property circumstances where force of gravity act in the negative 

y course. Likewise, with one exemption, accept the liquid to be incompressible. The special case 

includes representing the impact of adjustable density in the force of buoyancy as it’s this variety 

that initiates fluid movement. The last supposition is that the approximations of limit layer are 

legitimate. With the previous interpretations, for the uneven, 2-D stream of an incompressible fluid 

with consistent properties, y-momentum eqn 4.3 decreases to the limit layer eqn 4.5, apart from 

that the body constrain term fy is held. On the off chance that the main commitment to this force 

is made by gravity, the body force for each unit volume is fy = - g, with g as the neighborhood 

increasing speed because of gravity. Boussinesq estimation say that at every term of the equation 

of momentum, with the exception of the body constrain term, density is steady.  

At that point, 𝜌 = 𝜌(𝑇) for the body force. 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢

𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑦
= −𝜌𝑔 −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
).……………………………………………4.5 

Equation 4.5 might be framed in a more suitable method by first taking note of that from the x - 

momentum equation 4.2, 
𝜕𝑝

𝜕𝑥
= 0 if there is no body force in x-course which implies no pressure 

change toward a path perpendicular to the surface. Henceforth the y-pressure slope anytime in the 
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limit layer must be equivalent to the pressure inclination. Be that as it may, in this locale  𝑣 = 0 

and the Eqn 4.5 diminishes to; 

𝜕𝑝

𝜕𝑦
= −𝜌∞𝑔……………………………………………………………………………………4.6 

By substituting Eqn 4.6 into 4.5, resulting equation for momentum in y-course is acquired after 

executing some mathematical operations 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝑔 (

∆𝜌

𝜌
) + 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)……….…………………………………………….4.7 

Where ∆𝜌 = 𝜌∞ − 𝜌 and this applies at each section in the unrestricted convection limit layer. On 

the RHS of eqn. 4.7, buoyancy force is the first term and stream begin on the ground that density 

𝜌 is adjustable. In the event that variations of density are just owed to variations of temperature, 

the term might be associated to property of a fluid identified as coefficient of volumetric thermal 

expansion which is; 

𝛽 ≈ −
1

𝜌
(
∆𝜌

∆𝑇
) …………………………………………………………………………………..4.8 

It gives a measure of the quantity by which the density change at steady pressure due to variation 

of temperature. It’s stated in the estimated formula below; 

𝛽 ≈ −
1

𝜌
(
∆𝜌

∆𝑇
) = −

1

𝜌

𝜌∞−𝜌 

𝑇∞−𝑇 
 …………………………………………………………….……4.9 

It takes after that 

𝜌∞ − 𝜌 ≈ 𝜌𝛽(𝑇∞ − 𝑇 ) ………………………………………………………...………4.10 

This interpretation is identified as Boussinesq estimate and replacing it into Eqn 4.5, the y-

momentum equation becomes; 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝑔𝛽(𝑇∞ − 𝑇) + 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)………………………………….………….4.11 

where it’s presently clear how the bouyancy force, which drives the stream. The Boussinesq 

estimate is applied in natural convection in fluid dynamics which state that differences in density 
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are adequately little to be disregarded, aside from where they show up as multiples of g 

(gravitational acceleration). 

4.4. Boussinesq Approximations for natural convection in a rectangular enclosure 

For this work, there is not any of the body force in x-course and gravitational force g is the body 

force acting in negative y-course. If density varies just because of temperature differences 

(p=constant), Boussinesq estimation can be used into y-momentum eqn 4.5 by bearing in mind the 

dynamic and static pressures; 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢

𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) −

𝜕𝑝𝑆𝑡𝑎𝑡𝑖𝑐

𝜕𝑦
− 𝜌𝑔……………….………..4.12 

By introducing 4.10 into 4.12 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢

𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) + 𝜌∞𝑔 − 𝜌𝑔………….………………..4.13 

Equation 4.13 can be rearranged to get 𝜌∞ − 𝜌 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢

𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) − 𝑔(𝜌∞ − 𝜌)………………..……….4.14 

And by using the relation 4.10 in 4.14, following can be obtained; 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢

𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) + 𝜌𝑔𝛽(𝑇∞ − 𝑇)………………………4.15 

The Boussinesq assumptions made in this study (Boussinesq, 1903) include: 

➢ All the fluid motion transport properties remain constant apart from density in the 

buoyancy term. 

➢ The characteristic temperature ∆𝑇 be sufficiently small i.e. it tends to zero. 

➢ The viscous dissipation effect is negligible 

➢ The density varies linearly with temperature and the derivation from a reference value 𝜌𝑧 

is sufficiently small. 

4.5. Dimensionless Energy, Momentum and Continuity Equations 

Non – dimensionalizing governing equations makes equations simpler and highlights which terms 

are the most important. The main objective behind non–dimensionalization is to lessen number of 
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variables. The set of Equations 4.1, 4.2, 4.3 and 4.4 ought to be resolved to acquire the unknowns 

p, v, T and u. By applying Boussinesq estimation and then bringing up dimensionless constraints 

P, V, U, 𝜏 , θ, Y and X; 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, 𝑈 =

𝑢𝐿

𝛼𝑓
, 𝑉 =

𝑣𝐿

𝛼𝑓
 , 𝜃𝑓 =

𝑇𝑓−𝑇𝑐

𝑇ℎ−𝑇𝑐
 ., 𝜏 =

𝛼𝑓𝑡

𝐿2 , p=
𝐿2𝑝

𝜌𝛼𝑓
2………………………….…….4.16 

 The set of equation in dimensionless form becomes: 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0……………………………………………………………………….….……….4.17 

𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟 (

𝜕2𝑈

𝜕𝑋2
+

𝜕2𝑈

𝜕𝑌2
)……………………………………….………..4.18 

𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ 𝑃𝑟 (

𝜕2𝑉

𝜕𝑋2 +
𝜕2𝑉

𝜕𝑌2) + 𝑅𝑎. 𝑃𝑟. 𝜃𝑓…………………………………….4.19 

(
𝜕𝜃𝑓

𝜕𝜏
+ 𝑈

𝜕𝜃𝑓

𝜕𝑋
+ 𝑉

𝜕𝜃𝑓

𝜕𝑌
) = 𝑘 (

𝜕2𝜃𝑓

𝜕𝑋2 +
𝜕2𝜃𝑓

𝜕𝑌2 ) + Φ………………………………………….……4.20 

Where, Pr and Ra denotes Prantdl and Rayleigh numbers correspondingly; and θf the is 

dimensionless fluid temperature. In the next section, Grashof, Prandtl and Rayleigh number will 

be defined.  

4.6. Meaning of Dimensionless Constraints 

4.6.1. Prandtl Numbers 

Is a proportion of the momentum diffusivity to thermal diffusivity ∝ 

𝑃𝑟 =
𝑉

∝2 ………………..………………………………………………………………………4.21 

It gives a degree of the comparative efficiency of energy and momentum transport by diffusion in 

the speed and thermal limit layers. When Prandtl value is near to 1, then the momentum and energy 

transmission by diffusion are equivalent. If it’s less than 1, momentum diffusion rate is 

significantly exceeded by energy diffusion rate. The inverse is valid for Prandtl numbers more than 

1. This shows that Prandtl value greatly effects the relative development of velocity and thermal 

limit sheets.  
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4.6.2. Grashof Number 

Is the dimensionless number defined as; 

𝐺𝑟𝑙 =
𝑔𝛽(𝑇𝑠−𝑇∞)𝐿3

𝑉2 ……………………………..………………………………………………4.22 

The Grashof number assumes a comparable part in free convection that Reynolds number play in 

constrained convection. The measure of proportion of inertia to viscid forces acting on a fluid 

components given by Reynolds number. Conversely, Grashof value shows the proportion of 

buoyancy forces to viscid force acting on the fluid.  

4.6.3. Rayleigh Number 

Noting that free convection limit layers aren’t confined to laminar stream. Free convection streams 

ordinarily begin from a thermal unsteadiness i.e. hotter and less dense fluid rises upwards with 

respect to cooler and denser fluid. Nonetheless, for forced convection, hydrodynamic variabilities 

may likewise emerge. I.e., instabilities in the stream might be increased, prompting progress to 

turbulent from laminar stream. Change in free convection limit layers relies upon the relative size 

of viscid and buoyancy forces in the fluid. It is standard to correspond its event as far as the 

Rayleigh value, which is basically the result of Prandtl and Grashof number;  

𝑅𝑎𝐿 = 𝐺𝑟𝑙𝑃𝑟 =
𝑔𝛽(𝑇𝑠−𝑇∞)𝐿3

𝑣∝
………..…………..……………………………………………4.23 

The critical Rayleigh number for vertical plates is 108. Around this number shift to turbulence 

starts. According to Incropera and Dewitt (2002), turbulence strongly affects heat transmission 

that is why great importance is set on trial outcomes to get suitable correlations for turbulence 

stream where Rayleigh value is larger than 109. 

4.7. Two Dimensional Flow vorticity defination 

(Aksel 2003) defines vorticity vector,𝜉 , as curl of speed vector,�⃗�  ; 

𝜉 = 𝑐𝑢𝑟𝑙 �⃗� = ∇ × �⃗� …………………………………………………………………………4.29 

For two-dimensional stream, Eqn 4.29 becomes; 

𝜉 =
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
…………………………………………………………………………………….4.30 
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All through the turning, the course of a fluid component changes however its location, shape and 

dimensions don’t change. At the point when the liquid component moving in a stream field does 

not experience any pivot, at that point the stream is known to be irrotational. For irrotational 

stream;  

𝜉 = 𝑐𝑢𝑟𝑙 �⃗� = 𝛻 × �⃗� = 0 …………………………………………………………………….4.31 

4.8. Streamfunction - Vorticity Relation and Vorticity Transport Equation 

Differentiating dimensionless y-momentum eqn 4.19 w.r.t x and dimensionless x-momentum eqn 

4.18 w.r.t y, eqn. 4.32 is arrived at after eliminating the dimensionless pressure term P by 

rearranging the derivatives; 

𝜕

𝜕𝜏
(−

𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
) + 𝑈

𝜕

𝜕𝑋
(−

𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
) + 𝑉

𝜕

𝜕𝑌
(−

𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
) = 𝑃𝑟 [(

𝜕

𝜕𝑋
)
2

(−
𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
) +

(
𝜕

𝜕𝑌
)
2

(−
𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
)] + 𝑅𝑎𝑃𝑟

𝜕𝜃𝑓

𝜕𝑋
………………………………………………………………4.32 

The dimensionless vorticity can be defined as; 

𝜕𝑉

𝜕𝑋
−

𝜕𝑈

𝜕𝑌
= Ω………………………………………………………………………………….4.33 

After introducing the dimensionless vorticity4.33 into Equation 4.32; 

𝜕𝛺

𝜕𝜏
+ 𝑈

𝜕𝛺

𝜕𝑋
+ 𝑉

𝜕𝛺

𝜕𝑌
= 𝑃𝑟 (

𝜕2𝛺

𝜕𝑋2 +
𝜕2𝛺

𝜕𝑌2) + 𝑅𝑎𝑃𝑟
𝜕𝜃𝑓

𝜕𝑋
…………………………………….……4.34 

Equation 4.34 is the vorticity transport condition. In the x and y momemntum, the pressure term 

is eliminated thus reducing the two equations to one. The dimensionless streamfunction can be 

defined as  

𝑈 =
𝜕𝜓

𝜕𝑌
and 𝑉 = −

𝜕𝜓

𝜕𝑋
…………………………………………………………………….……4.35 

𝜕𝑈

𝜕𝑌
=

𝜕2𝜓

𝜕𝑌2
and 

𝜕𝑉

𝜕𝑌
= −

𝜕2𝜓

𝜕𝑋2
……………………………………………………………………..4.36  

From the definition of dimensionless vorticity 4.33 and by using 4.36; 

𝜕2𝜓

𝜕𝑋2 +
𝜕2𝜓

𝜕𝑌2 = −𝛺……………………………………………………………………………4.37 
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Equation 4.37 is the equation of streamfunction that’s demonstrating the connection between 

dimensionless streamfunction and dimensionless vorticity. 

4.9. Equation Sets in Streamfunction-Vorticity Form 

By utilizing dimensionless streamfunction 4.35 and dimensionless vorticity 4.33 variables, 

eliminating pressure term in the equation of momentum, governing equations in dimensionless 

form are acquired. Using vorticity-streamfunction method, the resulting equations are used in 

finding unknown velocities and temperature values; 

𝜕𝛺

𝜕𝜏
+

𝜕𝑈𝛺

𝜕𝑋
+

𝜕𝑉𝛺

𝜕𝑌
= 𝑃𝑟 (

𝜕2𝛺

𝜕𝑋2
+

𝜕2𝛺

𝜕𝑌2
) + 𝑅𝑎𝑃𝑟

𝜕𝜃𝑓

𝜕𝑋
……………..……………...….……………..4.38 

𝜕2𝜓

𝜕𝑋2 +
𝜕2𝜓

𝜕𝑌2 = −𝛺      …………………………………………….……………………………4.39 

𝜕𝜃𝑓

𝜕𝜏
+

𝜕𝑈𝜃𝑓

𝜕𝑋
+

𝜕𝑉𝜃𝑓

𝜕𝑌
=

𝜕2𝜃𝑓

𝜕𝑋2 +
𝜕2𝜃𝑓

𝜕𝑌2 …………………….………………………………………4.40 

In the equation 4.38, Rayleigh number is; 

𝑅𝑎 =
𝑔𝛽(𝑇ℎ−𝑇𝑐)𝐿

3

𝑣∝
…………….………………………………………………………………..4.41 

and the dimensionless vorticity and streamfunction are 4.33 and 4.35, respectively. 

Although the boundary conditions become relatively complicated in such an indirect method to 

solution of Navier – Stokes equations, the vorticity – stream formulation is more attractive than 

the primitive variable formulation because:- 

i. The number of differential equations to be solved is reduced.  

ii. Continuity equation is automatically satisfied. 

iii. It does not require staggered finite difference grid systems. 
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4.10 Boundary Conditions 

The parameters of the approaching stream (dissipation of the turbulent kinetic energy ω, stream 

velocity or pressure and turbulent kinetic energy k) are viewed as known. The limit conditions 

suggested are: 

𝑈∞

𝐿
< 𝜔𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 < 10

𝑈∞

𝐿
 

10−5𝑈∞
2

𝑅𝑒𝐿
< 𝑘𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 <

0.1𝑈∞
2

𝑅𝑒𝐿
 

𝜔𝑤𝑎𝑙𝑙 = 10
6𝑣

𝛽1(Δ𝑑1)2
 

𝑘𝑤𝑎𝑙𝑙 = 0 

Where L is the approximate length of computational area 

In this study, temperature of the hot wall was kept at 323k and the other cold wall at 303k. 

The operating temperature inside the enclosure of the air is 313k 

The aspect ratio of the enclosure varied from 4m by 2m, 8 by 2m, 12m by 2m and 16m by 2m. 

4.11 The k - ω Model of Turbulence 

Is one of the frequently utilized turbulence models. This lets a 2 - equation model to justify for 

history impacts such as diffusion of turbulent energy and convection. For this work, the SST k – 

ω Model will be utilized. According to Menter (1993), the utilization of k-ω formulation in the 

internal sections of the limit layer makes the model straightforwardly usable all the way down to 

the wall through the viscid sub-layer, hence the SST k-ω model can be utilized as a low-re 

turbulence model with no additional damping function.  

Thus, it was resolved that the SST k - ω model ought to be authenticated.  

4.12 Buoyancy – driven and Natural Convection Flows 

When a fluid heated and its density change with temperature a stream can be brought by 

gravitational force acting on the density differences. Such buoyancy – driven streams are called 

natural convection (or mixed – convection) streams and can be modeled by FLUENT. 
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4.13 Low – Reynolds Number Models 

Turbulent unrestricted convection from a heated vertical wall is predicted using the standard forced 

stream modification by Gatheri (1994), Lin and Churchill (1978) require the insertion of a 

destruction term. 

 In the 휀- equation it is necessary to include a generation term  2𝑣𝑣 (
𝜕2𝑢𝑗

𝜕𝑥𝑘
2 )

2

 

𝐶𝑢 and 𝐶𝜀2 are made function of 𝑅𝑡, turbulence Reynolds Number of 𝑅𝑡 =
𝑘2

𝑣𝜀
 which accounts for 

the Low – Reynolds impact on the stream region. The variation of 𝐶𝑢 is determined by 

necessitating that the turbulence viscosity change as per Van Driest design in the near wall region. 

The variation of  𝐶𝜀2 is selected such that the model will correctly foresee the decay isotropic grid 

turbulence for both low and high turbulence intensities like in this case. Low – Reynolds number 

models are designed to maintain the high – Reynolds turbulence formulation in the Log – Law 

regions and fit measurement in the viscous sub – layer near walls. Parameters 𝐶𝑢 and 𝐶𝜀2 are 

functions of Reynolds Number. 

4.14 Boundary Conditions 

4. 14.1 Temperature Boundary Conditions 

The non – dimensional was defined by  𝜃𝑓 =
𝑇𝑓−𝑇𝑐

∆𝑇∗
  where ∆𝑇∗ is the characteristic temperature 

variance between hot and cold surfaces i.e. ∆𝑇∗ = 𝑇ℎ − 𝑇𝑐 , the choice of 𝜃𝑓 ensures that it is 

bounded and lie between 0 and 1. The thermal boundary conditions which were used are isothermal 

and adiabatic conditions. These conditions are represented by the equations: 

𝜃𝑓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜕𝜃𝑓

𝜕𝑛
= 0 

Where n represents the direction perpendicular to a wall. Since the problem involves heating on 

one wall and cooling on the opposite wall all the remaining four walls of the enclosure are kept 

adiabatic on the cold and hot walls, the Derichlet boundary conditions are used where  

𝜃ℎ𝑜𝑡 = 1 𝑎𝑛𝑑 𝜃𝑐𝑜𝑙𝑑 = 0  
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Neumann boundary condition is used on the remaining four walls i.e.
𝜕𝜃𝑓

𝜕𝑛
= 0  for each of four 

walls. 

4. 14.2 Velocity Boundary Conditions 

The conditions in the motion of fluid at a boundary are specified in terms of the velocity. Particles 

close to a surface do not move along with a flow when adhesive forces are stronger than cohesive 

forces. In a closed cavity each boundary is impermeable. Normal component of velocity at each 

boundary is zero. For example, the boundary x=0 in the Y-Z plane. The velocity component 

orthogonal to the surface is certainly zero as mass can’t penetrate an impermeable solid surface. 

The differential equations are solved by means of Fluent 6.3.26 program. The results obtained are 

presented and discussed in the next chapter. Recommendations on other areas that can be 

investigated are also given. 
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CHAPTER FIVE 

NUMERICAL METHOD 

5.1 Introduction 

Fluid movement is guided by N–S equations, a set of nonlinear and coupled PDEs resulting from 

basic laws of conservation of energy, momentum and mass. The unknowns are generally 

temperature, pressure, stream velocity and density. The analytical solution of this equations is not 

possible henceforth in such situations, scientists resort to laboratory experiments. The results are 

generally qualitatively not the same as geometric and dynamical similitude are hard to apply at the 

same time between the laboratory experiment and prototype. Moreover, the plan and creation of 

these experimentations can be hard and expensive, especially for stratified spinning streams. CFD 

is a branch of fluid mechanics that uses data structures and numerical analysis to solve and analyze 

issues that involve fluid streams. Computers are utilized to play out the estimations necessary to 

simulate the interaction of fluids with surfaces defined by limit situations. Earlier, CFD was 

frequently contentious, as it included extra estimation to governing equations and brought up 

authentic problems. These days CFD is a well-known discipline along with experimental and 

theoretical approaches. This position is in substantial part because of the exponential development 

of PC control which has enabled us to handle ever bigger and more compound issues.  

In CFD, the fundamental procedure is discretization. It’s the way toward taking differential 

equations with unlimited amount of degrees of freedom and minimizing them to a limited degrees 

of freedom system. Subsequently, rather than solving all over and for all times, we will be 

contented with its calculation at definite time intervals and at limited number of locations. 

The partial differential equations are then reduced into algebraic equations system that can now be 

resolved. To guarantee that correct equations are being solved and that there is stability and 

convergence, there must be control of nature and characteristics of errors that may arise during the 

process of discretization process. Several discretization methods have been established to handle 

a variety of issues. They are spectral, finite volume, finite element and finite difference methods. 

We shall use finite difference methods for the purpose of this work. 

5.2 Finite Difference Solution Method  

It allows the dependent parameter values of a certain differential equation at all separate points in 

the computational area to be determined. The method employs the Taylor series expansion in 
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writing the derivative of a parameter as the difference among values of the parameter at several 

points in time or space. 

Fig 5.1 shows a curve of 𝑢 against 𝑥, i.e. 𝑢(𝑥). After discretization, the curve 𝑢(𝑥) can be 

represented by a set of separate points, 𝑢’s where Taylor series expansion can be used to relate 

them to each other. Considering a small change ∆𝑥 from point(𝑖) for points (𝑖 − 1) and (𝑖 + 1).  

 

 

 

 

 

 

 

Fig. 5. 1 Location of points for Taylor series 

Using Taylor series expansion about point (𝑖), the velocity 𝑢𝑖 can be expressed as:  

𝑢𝑖+1 = 𝑢𝑖 + [
𝜕𝑢

𝜕𝑥
] ∆𝑥 +

𝜕2𝑢

𝜕𝑥2

(∆𝑥)2

2
+ [

𝜕3𝑢

𝜕𝑥3]𝑖
(∆𝑥3)

6
+ …………………………………...…………5.1 

And 

𝑢𝑖−1 = 𝑢𝑖 − [
𝜕𝑢

𝑥
] ∆𝑥 +

𝜕2𝑢

𝜕𝑥2

(∆𝑥)2

2
− [

𝜕3𝑢

𝜕𝑥3]𝑖
(∆𝑥3)

6
+………….……………………..…….. ……..5.2 

If ∆𝑥 is little and number of terms are unlimited, then the above equations are numerically correct. 

Overlooking these terms prompts to a basis of error in the mathematical calculations as the 

equation for the derivatives is truncated and the error is known as truncation error. The truncation 

error for the second order accurate is expressed as: 

∑ [
𝜕𝑛𝑢

𝜕𝑥𝑛]𝑖
(∆𝑥)𝑛−1

𝑛!
∞
𝑛=3    ……………………………………………………….……………………5.3 

u

xi 

ui+1 

xi-h xi+h 

u 

x 

ui-1 
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By subtraction or addition of eqns. 5.1 and 5.2, the first and second derivatives at the central 

position 𝑖 can be found. They are  

[
𝜕𝑢

𝜕𝑥
]𝑖 =

𝑢𝑖+1−𝑢𝑖−1

2∆𝑥
− [

𝜕3𝑢

𝜕𝑥3]𝑖
(∆𝑥3)

2

6
  ………………………………………………………………. 5.4 

And 

[
𝜕2𝑢

𝜕𝑥2
]𝑖 =

𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

(∆𝑥)2
+ 𝑜(∆𝑥)2 ………………………………………………………………. 5.5 

Equations 5.4 and 5.5 are known as central difference for first and second derivative, 

correspondingly. Bearing in mind eqns. (5.1) and (5.2) in isolation, more derivatives can also be 

formed.  equation (5.1), the first order derivative can be formed as 

[
𝜕𝑢

𝜕𝑥
]𝑖 =

𝑢𝑖+1−𝑢𝑖

∆𝑥
− [

𝜕2𝑢

𝜕𝑥2]𝑖
(∆𝑥)

2
……………………………….. …………………………………..5.6 

This is known as Forward difference. Likewise, from eqn (5.2) another-order derivative can be 

formed, i.e. 

[
𝜕𝑢

𝜕𝑥
]𝑖 =

𝑢𝑖−𝑢𝑖−1

∆𝑥
− [

𝜕2𝑢

𝜕𝑥2]𝑖
(∆𝑥)

2
……………………………………………………………..……. 5.7 

This is referred as backward difference. 

The distinguishing feature of a Finite Difference Method is estimation of the temporal  
𝜕∅ 

𝜕𝑡
 and 

spatial (
𝜕2∅ 

𝜕𝑥2 ,
𝜕2∅ 

𝜕𝑦2) partial derivative in the governing equation with finite difference relating the 

values of the unidentified functions at a set of bordering grid points at several time-levels. Due to 

this approximation Partial Differential Equation (PDE) is replaced by the Finite-Difference 

Equation (FDE). The process of replacing the Partial Differential Equation with an algebraic 

Finite-Difference Equation is called Finite-Difference discretization or approximation.   

Process of Finite-Difference discretization is done in two steps, namely discretization of the 

solution domain and discretization of governing equations. 
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5.3 Discretization of the Solution Domain 

The stream in turbulent natural convection in an enclosure is characterised by a thin limit layer 

along the walls while the core is thermally stratified. A large quantity of grid points or 

computational nodes are required since the stream gradient is great in the limit layer, where the 

values of dependent parameters should be determined. In this study the primitive variable is used 

hence there is no need for a staggered finite difference grid system. The domain of the solution 

i.e., the enclosure is partitioned into a network of uniform rectangular grid with very fine spacing. 

 Figure 5.2 illustrates a 2-D computational area in Cartesian coordinate framework divided into 

small areas. The center to each subdivided area is a reference point called the node. There are four 

neighboring nodes for each node (i, j) in a 2-D computational area as shown in Fig. 5.3. 

 

Fig. 5. 2 A two-dimensional Computational grid. 

 

 

 

 

 

Fig. 5. 3 Cartesian coordinate showing a node (i,j) with its bordering nodes  

i-1, j 

i , j-1 

i+1, j 

i, j+1 

i, j 
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5.4 Discretization of Governing Equations 

This involves replacing governing equations with a finite-difference equation which is then applied 

sequentially at the internal nodes of the grid to give system of linear arithmetic equations that relate 

the estimation of unknown function ∅ at the nodes. 

The goal of PDE with the FDE is to generate the estimations of the function ∅ at the nodes (i, j).  

 

 

 

Fig. 5. 4 Three point Difference Approximation 

∅2 = ∅1 + ℎ∅′ +
ℎ2

2
∅′′ +

ℎ3

6
∅′′′ + 𝑜(ℎ4)………………………………………..……...........5.8 

∅0 = ∅1 − ℎ∅′ +
ℎ2

2
∅′′ −

ℎ3

6
∅′′′ + 𝑜(ℎ4)………………………………………..…………...5.9 

Subtracting equation (5.9) from (5.8) yields 

∅2 − ∅0 = 2ℎ∅′ +
1

3
ℎ∅′′′ + 𝑜(ℎ4)………………………………………………... ………..5.10 

Rearranging equation (5.10) we get 

∅′ = 
∅2−∅0

2ℎ
+ 𝑜(ℎ4)   ……………………………………………………….………………..5.11 

Adding equation (5.8) and (5.9) gives 

∅2 + ∅0 = 2∅1 + ℎ2∅′′ + 𝑜(ℎ4)   ……………………………………………………………5.12 

Rearranging the above equation results to 

∅′′ = 
∅2−2∅1−∅0

ℎ2 + 𝑜(ℎ2)……………………………………………………..………………..5.13 

Where ℎ is the grid spacing. 

h 

∅𝑜 ∅2 ∅1 

h 
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Now, using Taylor series expansion in 𝑡 to approximate the derivative of time 
𝜕∅

𝜕𝑡
 with first order 

backward difference method about a node (i, j) at time instant 𝑡𝑛+1 we get 

𝜕∅

𝜕𝑡
=

∅𝑖,𝑗
𝑛+1−∅𝑖,𝑗

𝑛

∆𝑡
+ 𝑜(∆𝑡)   ………………………………………………………………...…….5.14 

Using Taylor series expansion to approximate spatial derivatives with second order centered 

difference, we get 

𝜕2∅

𝜕𝑥2
=

∅𝑖−1,𝑗
𝑛+1 −2∅𝑖,𝑗

𝑛+1+∅𝑖+1,𝑗
𝑛+1

∆𝑥2
+ 𝑜(ℎ2)   ………………………………………….………………...5.15 

And 

𝜕2∅

𝜕𝑦2 =
∅𝑖,𝑗−1

𝑛+1 −2∅𝑖,𝑗
𝑛+1+∅𝑖+1,𝑗

𝑛+1

∆𝑦2 + 𝑜(ℎ2)…………………………………………………..…………5.16 

The method above gives second order accuracy in spatial partial derivatives and first order 

accuracy in time. 

Finite difference method allows spatial derivative of a differential equation for a grid point (i, j) to 

be written in terms of dependent variable values at that grid point and its neighboring grid points. 

Thus, the differential equation for point (i, j) can be diminished to an estimated arithmetic equation 

and the solution gives the dependent parameter value at point (i, j).  

Likewise, discretization in time of the problem is necessary for us to attain the dependent parameter 

value of a differential equation that depends on time at any point in the computational area. Thus, 

time derivative of the differential equation ought to be in terms of values of dependent parameter 

and a time interval ought to be defined; for instance, toward the start and end moment of the time 

intervals. In this work, the superscript n denotes time dependence of dependent parameter.  

5.6 Finite Difference Solution Technique for Parabolic Differential Equations  

Since energy eqn 4.40 and the vorticity eqn 4.38 are alike, Mobedi (1994), they can be written in 

form of a single generic equation  

𝜕∅

𝜕𝜏
+ 𝑈

𝜕∅

𝜕𝑋
+ 𝑉

𝜕∅

𝜕𝑌
= 𝐶 (

𝜕2∅

𝜕𝑋2
+

𝜕2∅

𝜕𝑌2
) + 𝑓 ………………………………………………………5.17 
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Where  ∅ is a generic dependent variable representing Ω.  

Equation 5.17 can be reduced to the following form; 

𝜕∅

𝜕𝜏
= 𝛿𝑋

2∅ + 𝛿𝑌
2∅ + 𝑓 …………………………………………………………………………5.18 

In equation 5.18, 𝛿𝑋
2∅ 𝑎𝑛𝑑 𝛿𝑌

2∅ are 

𝛿𝑋
2∅ = 𝐶

𝜕2∅

𝜕𝑋2 − 𝑈
𝜕∅

𝜕𝑋
 ……………………………………………………………….…………5.19 

𝛿𝑌
2∅ = 𝐶

𝜕2∅

𝜕𝑌2
− 𝑉

𝜕∅

𝜕𝑌
 …..………………………………………………………………………5.20 

Term  𝛿𝑌
2∅ and 𝛿𝑋

2∅  denote convection and diffusion transport in Y and X direction 

correspondingly. Therefore, they can be referred as diffusion-convection terms. Several finite 

difference approaches can be used to solve the parabolic PDE. These approaches are commonly 

categorized into 3 categories, i.e., Alternating Direction Implicit (ADI), implicit and explicit 

approaches (Thiault 1985).  

i) Explicit Methods:  

When the method is applied on Eqn 5.18 for any point (i, j) in Cartesian coordinates when a simple 

forward difference for the time term is utilized can be expressed as; 

∅𝑖.𝑗
𝑛+1−∅𝑖,𝑗

𝑛

∆𝜏
= 𝛿𝑋

2∅𝑖,𝑗
𝑛 + 𝛿𝑌

2∅𝑖,𝑗
𝑛 + 𝑓𝑖,𝑗

𝑛  ……..………………………………………………………5.21 

Where ∅𝑖,𝑗
𝑛  and ∅𝑖.𝑗

𝑛+1 denote the estimate of dependent parameter ∅ at node (i, j) at nth and (n+1)th 

time steps, correspondingly. By taking the numerical spatial derivatives of dependent parameter 

in the preceding time step, nth in Eqn 5.21 the unknown estimate of dependent parameter at point 

(i, j), ∅𝑖.𝑗
𝑛+1 can be found. Since values of the dependent parameter at all points of the computational 

area at nth time step are identified, it’s easy to determine the unknown ∅𝑖.𝑗
𝑛+1 in Eqn 5.21.  

Propagation of the dependent parameter is done point by point in explicit method. According to 

Roach (1976), stability of the technique needs utilization of small-time interval or small grid 

dimensions which requires high PC storage and computational period. 
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ii) Implicit Method 

 Applying implicit technique wholly on eqn 5.18 for any point (i, j) in Cartesian coordinate, when 

a simple forward difference for time term is utilized, can be expressed as; 

∅𝑖.𝑗
𝑛+1−∅𝑖,𝑗

𝑛

∆𝜏
= 𝛿𝑋

2∅𝑖,𝑗
𝑛+1 + 𝛿𝑌

2∅𝑖,𝑗
𝑛+1 + 𝑓𝑖,𝑗

𝑛+1…….……………………………………….……….5.22 

 In implicit technique, the spatial derivative of dependent parameter at the same time step 

determines the dependent parameter value at a new time step for a point (i, j), ∅𝑖,𝑗
𝑛+1. Therefore, m 

nodal equations must be acquired and solutions found so as the value of dependent parameter can 

be determined for a new time step in the computational area with m points. Thus, parabolic 

differential equation solution with implicit technique might be more complex compared to explicit 

technique.  

Entirely implicit techniques are more required for computational fluid issues. According to Roach 

(1976), in entirely implicit techniques, in computational domain, propagation speed of dependent 

parameter is unlimited and thus becomes as genuinely stable techniques. solutions can be acquired 

for larger grid size or time interval compared to explicit techniques. Even though, implicit 

techniques are theoretically suitable for computational fluid issues, practically to get results 

solutions of large matrices must be performed. 

iii) ADI method 

The ADI method splits the finite difference equation into two, one having the x – direction and the 

other the y – direction. Every time step is divided into two sub-steps of equal duration 1 2⁄ ∆𝑡 and 

approximating the spatial derivatives in a partially implicit manner while working sequentially and 

alternating in the x – and y – direction 

For computational fluid problems, ADI techniques are more suitable than implicit techniques. As 

an alternative of large matrices, they offer simple tri-diagonal matrices of wholly implicit 

technique. According to Roach (1976), the tri-diagonal matrices can simply be solved by using 

Thomas Algorithm technique without any repetition. Mostly in an ADI method, for 2-D issues, 

parabolic differential equation, the Y course remains explicit while the equation is solved 

implicitly in X course. Similarly, the equation is solved implicitly in Y course. Thus, ADI 

technique decreases a 2-D implicit technique to a progression of 1-D implicit techniques. 
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Additionally, majority of ADI techniques are unconditionally steady techniques which allow the 

solution of parabolic differential equation for large time intervals and mesh sizes. The issue of this 

work is 2-D, to eliminate large matrices and to get higher order accuracy of the fully implicit 

technique. Use of ADI technique on Eqn 5.18 when simple forward difference for time term is 

utilized for any point (i, j) in Cartesian coordinate may be expressed in 2 stages as; 

∅𝑖.𝑗
𝑛+1/2

−∅𝑖,𝑗
𝑛

∆𝜏/2
= 𝛿𝑋

2∅𝑖,𝑗
𝑛+1/2

+ 𝛿𝑌
2∅𝑖,𝑗

𝑛 + 𝑓𝑖,𝑗
𝑛   ……………………………………………………....5.23 

∅𝑖.𝑗
𝑛+1−∅𝑖,𝑗

𝑛+1/2

∆𝜏/2
= 𝛿𝑋

2∅𝑖,𝑗
𝑛+1/2

+ 𝛿𝑌
2∅𝑖,𝑗

𝑛+1 + 𝑓𝑖,𝑗
𝑛+1/2

 …………………………………….………….5.24 

Where Eqn 5.23 is explicit for y - course and implicit for x - course and Eqn 5.24 is explicit for x 

- course and implicit for y - course. Solution of dependent parameter at a new time step (n+1/2)th 

for a point (i, j) , ∅𝑖,𝑗
𝑛+1 relies upon spatial derivatives of dependent parameter at the similar time 

step for x - course and the mathematical spatial derivative of dependent parameter in the preceding 

time step nth for y - course. As a second step, the solution of dependent parameter at a new time 

step (n+1)th for point (i,j), ∅𝑖,𝑗
𝑛+1 , relies on spatial derivatives of dependent parameter at similar 

time step for y - course and the mathematical spatial derivative of dependent parameter in the 

preceding time step (n+1/2)th for y - course.  

Eqn 5.23 can be organized as;  

(1 −
∆𝜏

2
𝛿𝑋

2)∅𝑖,𝑗
𝑛+1/2

= (1 +
∆𝜏

2
𝛿𝑌

2)∅𝑖,𝑗
𝑛 +

∆𝜏

2
𝑓𝑖,𝑗

𝑛  ……………………………….…………….5.25 

Similarly, equation 5.24 can be arranged as 

(1 −
∆𝜏

2
𝛿𝑌

2)∅𝑖,𝑗
𝑛+1 = (1 +

∆𝜏

2
𝛿𝑋

2)∅𝑖,𝑗
𝑛 +

∆𝜏

2
𝑓𝑖,𝑗

𝑛+1/2
 ………………………………………….5.26 

As it can be seen, the most important benefit of ADI technique is that result of the equations can 

be found after two stages with regard to a fully implicit technique. 

5.7 Solver Execution 

From the computer program Fluent 6.3.26. Menu is laid out such that order of operation is 

generally left to right and using the menu to get the solution we 
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◼ Imported and scaled mesh file 

◼ Selected the physical models 

◼ Defined material properties 

◼ Prescribed operating conditions 

◼ Prescribed boundary conditions 

◼ Set solver controls 

◼ Set up convergence monitors 

◼ Computed and monitored the solution for convergence and accuracy 

 

5.8 Solution Procedure Overview 

 

 

 

 

 

  

 

 

Modify solution parameters 

or grid 

No 
Yes 

No 

Set the solution parameters 

Initialize the solution 

Enable the solution monitors of interest  

Calculate a solution 

Check for convergence 

Check for accuracy 

Stop 

Yes 
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5.9 Turbulent flow important input 

Table 5.1 shows the key input required to reproduce the outcomes shown in chapter six.   

Table 5. 1 Turbulent flow variable inputs 

Input Value 

Geometry  

 Aspect ratio 2 4 by 2 

 Aspect ratio 4 8 by 2 

 Aspect ratio 6 12by 2 

Aspect ratio8 16 by 2 

Models  

 Energy on 

 Viscous SST k-ω 

Material Properties (Air)  

 Density 1.1275 kg/m3 

 Dynamic Viscosity 19148E-5 kg/m-s 

Specific Heat Capacity 1.0069E+3J/Kg/K 

Thermal conductivity 0.027076W/m/k 

Thermal expansion coefficient 3.1934E-3 

Solution Methods  

 Pressure PRESTO 

 Momentum First Order Upwind 

 Turbulent Kinetic Energy First Order Upwind 

 Turbulent Dissipation Rate First Order Upwind 
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CHAPTER SIX 

Results and Discussions 

The results presented here were obtained by resolving the governing equations mathematically by 

utilizing Finite Difference Technique and together with the boundary situations give the numerical 

solutions for variables in SST 𝜅 − 𝜔 model.  

In this study, height is kept constant at 2m while changing the distance between two isothermal 

walls i.e. the right and left walls which in this case is referred as the aspect ratio. It is varied at a 

sequence of even numbers (2, 4, 6 and 8) and results of isotherms, stream lines and contours of 

velocity magnitudes are recorded at z = 0.5. 

6.1 Isotherms  

Isotherm is a line of equal or constant temperature or is a curve on a graph that connects points of 

equal temperature. 

In figure 6.1.1, the maximum temperature is 117K, in 6.1.2, the highest temperature is 56.7K, 

6.1.3, the highest temperature is 42.6K and in 6.1.4, the highest temperature is 34.2K. The high 

temperatures are evident on the left side wall. In all cases two round motion in opposite directions 

(anticlockwise and clockwise direction). There is rises up of hot less dense particles which losses 

its heat with distance as shown by change in color. In between the two isothermal walls there is 

mixing of air particles which is a region of thermal equilibrium and is a relatively warm region. In 

16 c and d, temperature uniformity is achieved. In conclusion, it is evident that maximum 

temperature decreases with increase in aspect ratio.  
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Fig. 6.1. 1 Isotherm of aspect ratio 2 

 

Fig. 6.1. 2 Isotherm of aspect ratio 4 
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Fig. 6.1. 3 Isotherm of aspect ratio 6 

 

Fig. 6.1. 4 Isotherm of aspect ratio 8 

 

6.2 Contours of Velocity Magnitudes 

In 6.2.1 the highest velocity of air particles is 0.456m/s, in 6.2.2 the highest velocity is 0.352m/s, 

in 6.2.3 the highest velocity is 0.308m/s and in 6.2.4 the highest velocity is 0.303 m/s. In 6.2.1, the 

highest speed is at the middle – at the mixing region. Vortices are more in 6.2.1 which become 

parallel as aspect ratio increases. In 6.2.4 are parallel than any other set up in this study and at this 

point is evident that as aspect ratio increases the flow becomes less turbulent. 
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Fig. 6.2. 1 Contours of velocity magnitude of aspect ratio 2 

 

Fig. 6.2. 2 Contours of velocity magnitude of aspect ratio 4 
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Fig. 6.2. 3 Contours of velocity magnitude of aspect ratio 6 

 

Fig. 6.2. 4 Contours of velocity magnitude of aspect ratio 8 
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6.3 Streamline Distribution 

A streamline is an imaginary line in a fluid such that the tangent at any point shows the path of the 

speed of a element of the fluid at that point.  

The lowest speed of an element indicated here for aspect ratio of 2 is 0.158Kg/s followed by that 

of aspect ratio 4 which is 0.185Kg/s. This value increases as aspect ratio increases as depicted by 

that of aspect ratio 6 which is 0.246 Kg/s and the highest speed which is 0.278 Kg/s as shown by 

that of aspect ratio 8.  In 6.3.1, the vortices are big in size and they assume a circular path which 

deforms as distance increases from their centers. In 6.3.2, radius of centre circle reduces which as 

well decreases as the aspect ratio increases to 8 as seen in 6.3.3. In 6.3.4 the two centre cell deforms 

and takes an oval shape. The vortices become parallel as aspect ratio increases. 

Fig. 6.3. 1 Contours of streamlines of aspect ratio 2 
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Fig. 6.3. 2 Contours of streamlines of aspect ratio 4 

 

Fig. 6.3. 3 Contours of streamlines of aspect ratio 6 
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Fig. 6.3. 4 Contours of streamlines of aspect ratio 8 

 

6.4 Conclusion 

The objective of the study was to investigate turbulent convection in a rectangular enclosure using 

SST k-ω model. To achieve this, we had set up specific objectives which were achieved as follows 

Numerical data were set for SST k-ω turbulence model. The Boussinesq estimations were utilized, 

allowing the conservation equations to be simplified. Discretization of governing equations with 

limit conditions were done using three-point forward and central difference approximations.  

Streamlines, isotherms and velocity magnitudes for aspect ratio 2, 4, 6, and 8 were generated and 

showed that the increase in aspect ratio decreased the turbulence. 

The results showed that increased aspect ratio decreased speed and vortices became more parallel 

thus decreasing turbulence. So, the aspect ratio has an important influence in temperature field and 

fluid stream in horizontal enclosures heated from the side. 

6.5 Recommendations. 

Further investigations are recommended for investigating turbulence convection in enclosure by; 

i) Using a three-dimensional configuration. 

ii) Using same configuration but using Standard k-ω model, Standard 𝑘 − 휀 model, RNG 

𝑘 − 휀 model, Realizable 𝑘 − 휀 and RANS model 
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iii) Varying the characteristics of the fluid contained in the enclosure. 
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