FIRST PRINCIPLES STUDY OF STRUCTURAL, ELECTRONIC AND MECHANICAL PROPERTIES OF LANTHANUM FLUORIDE AND LANTHANUM DOPED BARIUM FLUORIDE

WABULULU ELICAH NAFULA
(Msc)
I84/33524/2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY (PHYSICS) IN THE SCHOOL OF PURE AND APPLIED SCIENCES OF KENYATTA UNIVERSITY

NOVEMBER, 2020
DECLARATION

This thesis is my original work and has not been presented for a degree or other awards in any other university.

Signature: .. Date: ..

Elicah N. Wabululu I84/33524/2014
Department of Physics
Kenyatta University

SUPERVISORS

The work presented in this thesis was carried out by the student with our approval as University supervisors.

Signature………………………… Date………………………

Dr. Philip W.O. Nyawere
Department of Physical and Biological Sciences
Kabaraki University

Signature………………………… Date………………………

Dr. Daniel B. Bem
Department of Physics
Kenyatta University
DEDICATION

To team Eicah USA who have sacrificed many things in order for me to achieve my higher education.

To my husband Vincent Masifwa Wekesa, my daughters Talitha Nekesa and Talia Mutiembu for their love, patience and emotional support.
ACKNOWLEDGEMENTS

I acknowledge the Almighty God for His providence during the period of this study. My supervisors, Dr. P.W.O Nyawere, Kabarak University and Dr. Daniel B. Bem, Kenyatta University for giving me guidance, intellectual support, and encouragement through the course of my thesis. To the Physics department of Kenyatta University, thank you for your time during the weekly seminars that were of great contribution to this work. All postgraduate students whose discussions and constant encouragements made this work successful.

My gratitude to the Computational Methods and Materials Science (CMMS) SIGKENET group led by Prof. George Amolo, Dr. Moses Thiga, Dr. George Manyali and Dr. Kipkorir for the various meetings to discuss DFT methods.

The Computational and Theoretical Physics (MMUST) members; James Sifuna, Alima Mukasia, Gloria Murila, Manasse Kituyi, Samuel Opiyo, John Maera and Oketch Vincent gratitude for the constant encouragement and nurture towards DFT.

The 1st Advanced School on Applications of First-Principles and Molecular Simulations in Physical Sciences (Nigeria, 2018) was very resourceful on computational theory. I appreciate the Center for High Performance Computing (CHPC), Cape Town (South Africa) for the provision of High Performance Computing resources useful in all calculations in this thesis.
TABLE OF CONTENTS

DEDICATION .. iii
ACKNOWLEDGEMENTS ... iv
TABLE OF CONTENTS .. v
LIST OF TABLES .. viii
LIST OF FIGURES .. ix
SYMBOLS AND ABBREVIATIONS .. x
ABSTRACT ... xiii
CHAPTER ONE .. 1
INTRODUCTION .. 1
1.2 Lanthanum Fluoride (LaF₃) ... 2
1.3 Barium Fluoride (BaF₂) and BaF₂:La .. 3
1.4 Statement of the Problem .. 5
1.5 General objective .. 6
1.6 Specific objectives ... 6
1.7 Significance of the Study/Justification .. 6
1.8 Scope of the Study ... 7
CHAPTER TWO ... 8
LITERATURE REVIEW ... 8
2.1 Introduction .. 8
2.2 Lanthanum Fluoride (LaF₃) ... 8
2.3 BaF₂ and BaF₂:La ... 13
2.4 Structural and Electronic Properties Calculations 15
2.5 Elastic constants for LaF₃ .. 16
2.5.1 Elastic constants for BaF₂ and BaF₂:La ... 17
2.6 Defects and Defect Formation Energy ... 18
2.7 Optical properties of BaF₂ and BaF₂:La .. 19
CHAPTER THREE ... 21
MATERIALS AND METHODS .. 21
3.1 Introduction .. 21
3.2 Hohenberg-Kohn Theorems ... 23
3.3 Kohn-Sham Approach E_{xc} .. 24
3.4 The exchange correlation functionals ... 28
3.4.1 Local Density Approximations (LDA) ... 28
3.4.2 Shortcomings and Improvements of LDA ... 29
3.4.3 Generalized Gradient Approximation (GGA) ... 30
3.4.4 Hybrid functionals and GW approximation ... 30
3.5 Implementation .. 31
3.5.1 Plane waves ... 31
3.5.2 Reciprocal Space (Brillion Zone) and k-Points .. 33
3.5.3: Pseudo-Potential ... 35
3.5.4 Cut-Off Energy ... 36
3.6 Structural Properties of Materials .. 37
3.7 Electronic Properties ... 38
3.7.1 Band structure and Band gaps ... 38
3.7.2 Density of states (DOS) ... 40
3.7.3 Electronic Properties of BaF$_2$ and BaF$_3$: La ... 41
3.7.4 Elastic constants of LaF$_3$.. 42
3.7.5 Elastic constants of BaF$_2$:La .. 44
3.8 Defect Formation Energy .. 46
3.8.1 Interstitial formation energy ... 46
3.8.2 Neutral charge formation energy ... 47
3.9 Optical properties .. 47
3.9.1 Reflectivity .. 49
3.9.2 Absorption coefficient ... 50
CHAPTER FOUR .. 51
RESULTS AND DISCUSSIONS .. 51
4.1 Results ... 51
4.1.1 Phase Stability of LaF$_3$.. 52
4.1.2 Structural properties of BaF$_2$ and BaF$_3$: La .. 53
4.1.3 Electronic properties of LaF$_3$.. 55
4.1.4 Electronic properties of BaF$_2$ and BaF$_3$:La .. 57
4.1.5 Mechanical Properties of LaF$_3$, BaF$_2$ and BaF$_3$: La 62
4.1.6 Defect formation energy of BaF$_2$: La .. 64
4.1.7 Neutral Charge formation energy of BaF$_2$: La ... 65
4.1.8 Optical properties of BaF$_2$ and BaF$_2$: La ... 66

CHAPTER FIVE ... 72

CONCLUSIONS AND RECOMMENDATIONS .. 72

5.1 Conclusions ... 72

5.2 Recommendations .. 73

5.3 Suggestions for further studies ... 74

REFERENCES .. 75

APPENDICES .. 82

APPENDIX I: Input file for pwscf code tysonite LaF$_3$ structure 82

APPENDIX II: Input file for pwscf code Supercell BaF$_2$ structure 83

APPENDIX III: Input file for pwscf code Supercell BaF$_2$:La 84

APPENDIX IV: Input file for pwscf code Supercell BaF$_2$:La with neutral charge . 85

APPENDIX V: Publications ... 86
LIST OF TABLES

Table 4.1: Lattice constants, volume per atom and bulk modulus for LaF$_3$........52
Table 4.2: Band gap values for tysonite LaF$_3$..57
Table 4.3: Band gap values for BaF$_2$ and BaF$_2$: La..62
Table 4.4: The elastic constants (GPa) and Debye temperature Θ_D for
tysoniteLaF$_3$ at ground state ...63
Table 4.5: The Voight-Reuss and Hill's obtained values of the bulk modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa), B/G and Poisson’s ratio (v) for LaF$_3$...63
Table 4.6: Elastic constants (GPa) for BaF$_2$ and BaF$_2$:La at ground state64
Table 4.7: Calculated values of the for defect energy ..65
Table 4.8: Defect formation energy ..65
Table 4.9: Calculated neutral charge formation energy ..66
Table 4.10: Refractive index of BaF$_2$ and BaF$_2$:La ..70
LIST OF FIGURES

Figure 1.1: Cubic structure of BaF$_2$... 4
Figure 3.1: A typical computational procedure .. 27
Figure 3.2: Convergence graph for K-points... 34
Figure 3.3: Pseudopotential of an atomic electron wave function 35
Figure 3.4: Cut-off optimized energy curve of LaF$_3$.. 36
Figure 3.5: Illustration of a direct band gap in a material 40
Figure 3.6: Illustration of an indirect band gap in a material 40
Figure 4.1: The LaF$_3$ tysonite structure ... 51
Figure 4.2: Phase stability for LaF$_3$ phases ... 53
Figure 4.3: A supercell of BaF$_2$.. 54
Figure 4.4: Supercell structure of BaF$_2$: La .. 54
Figure 4.5: LaF$_3$ band structure ... 55
Figure 4.6: Density of states of LaF$_3$... 56
Figure 4.7: Band structure of BaF$_2$... 58
Figure 4.8: Density of states of BaF$_2$.. 59
Figure 4.9: Band structure of BaF$_2$: La .. 60
Figure 4.10: Density of states of BaF$_2$: La ... 61
Figure 4.11: Optical spectrum of BaF$_2$... 67
Figure 4.12: Optical spectrum of BaF$_2$:La ... 68
Figure 4.13: Refractive index of BaF$_2$... 69
Figure 4.14: Refractive index of BaF$_2$:La .. 70
SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Psi)</td>
<td>Many body wave function</td>
</tr>
<tr>
<td>E</td>
<td>Hamiltonian total energy</td>
</tr>
<tr>
<td>(M_1)</td>
<td>Nuclei masses</td>
</tr>
<tr>
<td>(Z_1)</td>
<td>Nuclei charges</td>
</tr>
<tr>
<td>(\hbar)</td>
<td>Reduced Plank’s constant</td>
</tr>
<tr>
<td>(\nabla^2)</td>
<td>Second derivative of gradient</td>
</tr>
<tr>
<td>BZ</td>
<td>Brillouin zone</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>DOS</td>
<td>Density of state</td>
</tr>
<tr>
<td>e</td>
<td>Electronic charge</td>
</tr>
<tr>
<td>m</td>
<td>Electron mass</td>
</tr>
<tr>
<td>(\vec{R}_1)</td>
<td>Nuclei positions</td>
</tr>
<tr>
<td>(H)</td>
<td>Total Hamiltonian</td>
</tr>
<tr>
<td>(H_e)</td>
<td>Electron Hamiltonian</td>
</tr>
<tr>
<td>(\tau_i)</td>
<td>Election position</td>
</tr>
<tr>
<td>(\varphi_e)</td>
<td>Electron wave-function</td>
</tr>
<tr>
<td>(\varphi_{nucl})</td>
<td>Nuclei wave-function</td>
</tr>
<tr>
<td>(n_\rho)</td>
<td>Charge density</td>
</tr>
<tr>
<td>(v_\rho)</td>
<td>Ground state potential</td>
</tr>
<tr>
<td>(E_{xc})</td>
<td>Exchange correlation energy</td>
</tr>
<tr>
<td>(F[n(r)])</td>
<td>Universal functional</td>
</tr>
<tr>
<td>(T)</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>(\epsilon_k)</td>
<td>Lagrange multiplier</td>
</tr>
</tbody>
</table>
$\varepsilon_{xc}^{\text{hom}}$ Homogeneous exchange correlation

T_c Phase transition temperature

σ Ionic conductivity

ΔE Defect formation energy

k_B Boltzmann constant

C'' Shear modulus

E_i Energy of crystal with interstitial

H_B Born-oppenheimer Hamiltonian

∇ Partial differential

B Bulk modulus

DFT Density functional theory

KS Kohn-Sham

HK Hohenberg-Kohn

PAW Projected augmented wave

USPP Ultrasoft pseudo-potentials

LAPW Linearized augmented plane wave

LDA Local density approximations

GGA Generalized gradient approximation

eV Electron-volts

F Fluorine

GGA Generalized gradient Approximation

Gpa Giga Pressure

GRACE Graphing Advanced Computing and Exploration of data

HF Hatree Fock

IR Infrared
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>Lanthanum</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode</td>
</tr>
<tr>
<td>PBE</td>
<td>Perdew Burke Ernzerhof</td>
</tr>
<tr>
<td>scf</td>
<td>Self consistent field</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>VASP</td>
<td>Vienna Ab initio Simulation Package</td>
</tr>
<tr>
<td>XcrysDen</td>
<td>X-window Crystalline Structure and density</td>
</tr>
<tr>
<td>Xe</td>
<td>Xenon</td>
</tr>
<tr>
<td>Z</td>
<td>Atomic number</td>
</tr>
</tbody>
</table>
ABSTRACT

Lanthanum Fluoride (LaF$_3$) has several applications for instance, in electrodes manufacture, fluorescent lamps and fiber optic devices due to its high heat capacity. Barium fluoride (BaF$_2$) is an alkaline-earth element with a wide band gap with many optical applications, such as lithography. BaF$_2$ has been established as an excellent candidate that is useful for hosting optically active centers (OAC). Lanthanide elements have been used as dopants in BaF$_2$ lattice to achieve the desired optical properties, which has not been fully explored. With these vast applications of these compounds, it is necessary to carry out complementary theoretical investigations on their properties to explore full applications. The structural, electronic, mechanical and optical properties for LaF$_3$, BaF$_2$ and BaF$_2$:La have been investigated in this current work using theoretical computational modeling. These properties have been studied using the generalized gradient approximation (GGA) employing pseudopotentials and plane wave basis sets as implemented in Density functional theory. Lattice constants and bulk modulus for LaF$_3$ were calculated and the values obtained were found to be in good agreement with experimental and other theoretical values. Density of states and energy band structure for LaF$_3$, BaF$_2$ and BaF$_2$:La have been obtained along high symmetry points in k-space, respectively. A band gap of 7.79eV was obtained for LaF$_3$ which is an underestimation in comparison to the 9.0eV of experiment. Values of elastic constants calculated for LaF$_3$ are comparable with those from other experimental and theoretical calculations. LaF$_3$ exhibits mechanical stability from the obtained elastic constants. Doping BaF$_2$ with La reduced the band gap and introduced new energy bands within the band gap from the charge compensating fluorine. The elastic constants calculated for BaF$_2$:La show a decrease in the first two elastic constants with no change in the third component of the elastic constants compared to the pure BaF$_2$. This has been attributed to the lattice distortion introduced by the La atom. From the defect formation energy calculated, nearest neighbor (NN) formation energy was found to be -26.48eV compared to the next nearest neighbor (NNN) of -27.58eV. It was observed that the next nearest neighbor is most favorable in BaF$_2$ lattice. For optical properties, there was a shift in the absorption coefficient from 5.32 m$^{-1}$ to 6.25 m$^{-1}$ of BaF$_2$ when doped with La. The refractive index of BaF$_2$ is obtained as 1.52 compared to experimental value of 1.45. The obtained refractive index is in good agreement with experimental values. The introduction of La atom together with the interstitial fluorine affects electronic, mechanical and optical properties of BaF$_2$.
CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

With the help of supercomputers and high computing resources it has been proved possible to design and analyze novel materials for a specific application (Stefano et al., 2013). Experimental studies can be tedious, time consuming, expensive and may not lead to success due to limited resources and equipments. Theoretical modeling through appropriate ‘computing application tools' help us to narrow down on material choices and increase the probability of success in experimental work (Amolo, 2018). Through ‘Quantum theory’, the interactions between the constituent atoms of a given material can be determined and this helps to estimate the properties of the material. It becomes indispensable for any ‘Materials Researcher’ to adapt ‘Theoretical Modeling Methods’ in order to predict better potential novel candidate for specific applications. There are many theories and models that have been put forward for a better understanding of the mechanism that accounts for the properties and thereby to design new materials. Band structure calculations have been an effective theoretical tool for researchers in predicting many properties viz., structural, electronic, transport, magnetic, mechanical and physical properties of materials.

Ab-initio quantum methods are computational methods aiming at solving the electronic Schrödinger equation with the knowledge of the positions of nuclei and the number of electrons in the system. *Ab-initio* methods predict the electron densities, energies and other properties of the system (Niu & Mueller, 2016). Density Functional Theory (DFT) is one of those important theories available through the first principles
calculations study. The second chapter discusses in detail about the origin of DFT, the various approximations and methods used in it. This chapter discusses the materials chosen for the present study.

1.2 Lanthanum Fluoride (LaF$_3$)

Lanthanum fluoride (LaF$_3$) crystallizes in three major structures i.e. tetragonal, orthorhombic and tysonite phases (Masoud et al., 2010). However, the tysonite structure is stable at room temperature and thus suitable for applications at ambient conditions. There is however controversy in their structures since it has been noted that LaF$_3$ ($P_{3}c1$) and LaF$_3$ ($P6_{3}cm$) types are indistinguishable by X-ray diffraction spectroscopy (Crichton et al., 2010). The orthorhombic phase belongs to Cmma space group with eight atoms in a primitive cell. From computational method it has been reported that the tetragonal phase exists at high pressure with two formula units per primitive unit cell, I4/mmm space group (Winkler et al., 2003). However, in recent studies, trigonal crystal systems are considered as a subset of hexagonal systems. LaF$_3$ belongs to a group of materials which have several applications. It is used for deep vacuum and ultra-violet (UV) applications because of its high transparency in these wavelengths range which makes a highly refractive layer material (Taki & Muramatsu, 2002). LaF$_3$ is known to be one the materials with the highest ionic conductivities and super-ionic transitions, and it is therefore used as a solid electrolyte in the battery industry (Modak et al., 2009). Its high heat capacity (above 900 K) makes it suitable for applications in electrodes, radiation, fiber optics and fluorescent lamps (Taki & Muramatsu, 2002). Due to the potential of the LaF$_3$ material for application in vast areas, it is essential to carry out both experimental and theoretical studies on structural and electronic properties of LaF$_3$.
1.3 Barium Fluoride (BaF\(_2\)) and BaF\(_2\):La

Barium fluoride belongs to wide band gap alkaline materials. BaF\(_2\) exists in more than one phase. It exists in a cubic structure whose space group is \(Fm\bar{3}m(\text{Cl})\) at room temperature conditions. BaF\(_2\) undergoes a phase transition at high pressure of 3-5 GPa to orthorhombic phase space group \(Pnma\) (C23). It also becomes hexagonal space group \(P6_3\text{mmc}\) (B8b) at about 10-15 GPa. Their cubic lattice structure enables transmission of a wide range of wavelengths and indicates independence of absorption from induced polarization. They have similarly matched refractive index values that can be exactly matched to a glass or polymer for use in composite materials (Wang et al., 2005). The cubic fluoride structure also allows for the aggregation and clusters of RE\(^{3+}\) ions, making interactions strong and distance between the active ions short (Petit et al., 2006). This implies propensity for ease of energy transfer when the materials are co-doped with RE\(^{3+}\) ions. Barium fluoride is found to have transparency in the visible and near-IR regions (Lian et al., 2004). Many theoretical approaches have been employed to study fluoride compounds at the excited states or ground state. Figure 1.1 illustrates the structure of cubic BaF\(_2\) at ambient condition, (Fooladchang et al., 2013).
Barium fluoride (BaF$_2$) belongs to alkaline-earth elements with large band gaps which are applicable in many optical applications, (Nyawere et al., 2014). As an example in lithography application, BaF$_2$ is used as a lens material because of its short wavelength (Shi et al., 2011). The introduction of an interface that makes the ions to be redistributed in the space charge region in BaF$_2$ makes it to be considered as a superionic conductivity material. This can also be done by appropriate impurities being dissolved into the lattice, and therefore BaF$_2$ is considered as a candidate material for high-temperature batteries, fuel cells, chemical filters and sensors (Sata et al., 2000). Solids with superionic conductivity properties allow ions to move through the structure macroscopically making the material to posses ionic conductivity at high levels while in the solid state, (Keen et al., 2002). They are also regarded to be fast ion conductors with negligible electronic conductivity.
Due to lanthanides contraction it has been established that the radii of rare-earth ions decrease with increasing atomic number (Chen et al., 2008). The structure of the external electron orbitals of these ions remain practically unchanged, because the electrons are filling the localized 4f shell at the same time. Fluorite structure materials, can be disordered by introducing trivalent elements for example the lanthanides or by thermal activation (intrinsic conductors), making these structures good examples for studies of the mechanism of ionic transport in crystalline materials.

It has been established that in any real material the unavoidably presence of impurities and defects strongly affects both mechanical and optical properties of their crystals, (Huang et al., 2016). BaF₂ has been established as an excellent candidate that is useful for hosting optically active centers (OAC) and lanthanide elements used as dopants in BaF₂ lattice to achieve the desired optical properties. Understanding the electronic and mechanical properties of BaF₂ and BaF₂:La is considered of great importance in the search for new materials applicable in areas such as solid electrolytes which has potential application in the battery industry among other applications.

1.4 Statement of the Problem

LaF₃ is a model system for several applications. From recent literature, discrepancies between experimental data and computational results obtained for structural and electronic properties still exist. BaF₂ exhibits superionic conductivity, it has been reported that this property can be improved by doping it with rare earth ions. This superionic property enables BaF₂ to be regarded as a candidate material for high-temperature batteries, fuel cells, chemical filters and sensors (Sata et al., 2000).
1.5 General objective

To determine the structural, electronic and mechanical properties of LaF₃ and BaF₂:La at ground state.

1.6 Specific objectives

i. To determine structural and electronic properties of LaF₃ and BaF₂:La

ii. To determine the elastic constants of LaF₃ and BaF₂:La using \textit{ab initio} method with Density Functional Theory as implemented in the Quantum Espresso Code.

iii. To study the interstitial defect formation energy in La doped BaF₂.

iv. To study the optical properties of BaF₂ and BaF₂:La.

1.7 Significance of the Study/Justification

A super-ionic transition exists in Lanthanum compounds and especially in LaF₃ compound. It is this property that makes LaF₃ appropriate for use as a solid electrolyte which has potential application in the battery industry. This material has unusual high heat capacity (above 900 K), suitable for application in high temperature electrodes.

On the other hand, BaF₂ is a wide band gap material whose band gap decreases when doped with lanthanum. The doping substantially increases its conductivity through reduced band gap (Labeguerie \textit{et al.}, 2006). Trial and error in some experimental methods have been used to carry out doping and the current results are expected to enable experimentalists give an optimum application of BaF₂:La.
1.8 Scope of the Study

Structural, electronic and mechanical properties of the tysonite phase of LaF₃ using first principles method are here studied. This thesis also presents results from the study of electronic, mechanical and optical properties of lanthanum doped barium fluoride (BaF₂:La) supercell. The consequences of La as an impurity on optical properties of BaF₂ and mechanical properties of BaF₂:La have also been studied. The defect formation energy is also discussed. This thesis is arranged in the following order; Chapter 1 is the introduction on LaF₃, BaF₂ and BaF₂:La materials with their applications. Chapter 2 gives a detailed account on the works done by other scholars on LaF₃ and BaF₂:La. Chapters 3 gives detailed methodology of the research. Chapter 4 gives the results and discussion with comparison with previous studies done this far. Chapter 5 provides conclusive remarks, recommendations on the study and the gaps to be filled in future.
CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

Computational methods are solving problems in material design because of their capability to examine and control material invention with newest complexity, (Knauth & Tuller, 2002). Computer simulations in atomic designs have played major roles in illustrating relevant energetic and structural properties of atoms that makes up materials. Designing and simulation of materials using computers includes various disciplines such as statistical mechanics and quantum chemistry and solid state physics. A good understanding of the concepts underlying the computer simulation approaches have major impacts on strengths and disadvantages for material designers to benefit fully from the computational methods while illuminating the doubts that are associated with the methods. Computer simulations have been used to interrogate a vast range of materials such as graphite among others and magnetic materials (Makau et al., 2006). The results obtained from these investigations are comparable to experimental results and the approaches used here are therefore encouraged in the search of new materials, (Knauth & Tuller, 2002).

2.2 Lanthanum Fluoride (LaF₃)

Electronic and structural properties of LaF₃ have been studied widely through experimental (Crichton et al., 2010) and theoretical methods (Modak et al., 2009). Experimentally, it has been established that at about 20GPa the trigonal structure of LaF₃ transits into a new phase structure, as studied by X-ray diffraction method, (Crichton et al., 2010). A new orthorhombic phase that belongs to Cmma space group with eight formulas in a unit cell (Dyuzhena et al., 2003) is formed. In parameter-free
atomistic model simulations, synchrotron X-ray diffraction and Raman spectroscopy it predicts the occurrence of orthorhombic phase with space group \(Pmnn \) and that this phase remains stable up to 60 GPa this is according to Crichton, (Crichton et al., 2010). Zhenlong and the co-author have used the plane -wave pseudo-potential density functional method, as implemented in Castep in the study of elastic constants, thermodynamic and electronic properties of LaF\(_3\) in tysonite structure (Zhenlong et al., 2014). LaF\(_3\) was established to have a wide-band-gap of 7.74 eV, though this results on band gaps are very exact compared with experimental results obtained earlier of 9.7eV. Other methods such as full potential linearized augmented plane wave (FP_LAPW) method as implemented in WIEN2K have been explored in the study of band gaps in LaF\(_3\) and reported a band gap of 6eV lower than experimental work of Modak and others (Modak et al., 2009). However, this has brought a disagreement with the tysonite phase which has not been studied extensively. This is due to the fact that the tysonite structure is complex compared to others in existence and studied this far.

LaF\(_3\) has also been studied by use of the first-principles VASP code approach. Results reported that tysonite structure transforms to a primitive orthorhombic structure (\(Pmnn \)) at around <19.5GPa, these results are not comparable with the experimental of 16 Gpa. (Sahoo et al., 2017). Though various studies have been done on LaF\(_3\), there exist some controversy in terms of exact results obtained between the experimental methods and computational simulations. Rare earth elements have been used as dopants in various materials, as defined by respective application. For instance, when doped in glasses they allow for broader emission and absorption spectral properties (with respect to crystalline hosts), making them ideal for many optical fiber devices
such as lenses. Other applications require crystalline hosts for their inherently superior, thermal properties and narrower line-widths (Joubert et al., 2005).

LaF$_3$ also exhibits superionic property. Superionic conductors represent a group of materials which show anomalous high ionic conductivity. The macroscopically allowed movement of ions in materials is characterized by strong disorder in their lattice and leads to exceptionally high (liquid-like) values of ionic conductivity whilst in the solid state. The behavior particularly happens at higher temperatures which are featured with a very fast diffusion of larger fraction constituting of different species within an essentially rigid framework formed by the species (Keen et al., 2002). Mixed conductors are some of the materials, which are good electronic conductors, while ionic conductors refer to superionic conductors or fast ion conductors with almost zero electronic conductivity, which are sometimes called solid electrolytes and often used in electronic devices. Fast conductors or solid electrolytes have continuously given rise to interest in their high ionic mobility, in many technological promises and as solid state materials for the research of various problems. The fast conductor materials have been equated to higher levels of ionic conductivities; they also exhibit various different types of characteristics both in the critical region and in the fast ion state. As a result of drifting of ions, ionic crystals possess small electrical conductivity. Compared to liquid phase the superionic conductors have smaller drifts, this makes the ions capable of diffusing from one site to another within the lattice. The thermally created lattice defects results into these drifts. At temperatures just below melting point, T_m, the fluorites exhibit broad specific heat anomaly which passes through a maximum at a particular temperature, T_c. Ionic conductivity increases with temperature which in turn is increased by the presence of Schottky
defects. This is where vacancy allows other atoms to easily diffuse through it since less energy is required to move the electrons and in the process, vacancy migrates in opposite direction. This migration is referred to as diffusion and it is an important property which helps understand if it is likely that the defect can be incorporated during growth and processing. This also helps in the understanding of impurity diffusion, which is always mediated by original defects (Limpijumnong & Van de Walle, 2004). Diffusion is a key aspect in mechanism of device degradation and increases electrical conduction. For proper interpretation of results and comparison with experiments, it is necessary to have knowledge of defect formation energy.

Materials that contain large numbers of defects, so that the ions can migrate easily (at high temperature) can have a high ionic conductivity, (Wang et al., 2006). In some ionic materials, this high ionic conductivity with liquid-like values is attained before the melting of the crystal and such materials are also known as superionic conductors. Superionic conduction can occur through distortion of lattice structure at the lower temperatures. Structure of materials makes it an ordinary ionic crystal, but at elevated temperatures it undergoes a non-continuous change to new structure in which the conductivity is liquid-like. The materials can also change to superionic as a result of change in defect concentration becoming larger before melting point. Fluorite compounds that undergo diffusion that is a continuous transition are being accepted at high temperature to other states that are heavy and less massive dynamic disorder in the sub-lattice of anion and transport of ions are through a hopping mechanism. The clarification of some of the conduction mechanisms and other aspects of fast conductors such as defect structure, the extent and exact nature of disorder are still not well explored.
LaF$_3$ has superionic transitions and ionic conductivity (Sinitsyn et al., 2003). Ionic superconductivity finds many applications as a solid electrolyte and may soon be used in the battery industry. Electrical conduction in the ionic state is majorly through the F$-$ ion since La$^{3+}$ is heavy and cannot easily move through vacancies in the crystal as F$. It is important to note that LaF$_3$ is essentially but not purely ionic (Sinitsyn et al., 2003) since there are very small covalent bonds between La and F. This is the major reason for different conclusions about parameters of LaF$_3$ crystal from different atomic simulation studies depending on quantum or chemical charges used.

Regardless of type of parameters used, the final characteristics of luminescent devices are dependent upon the optical properties resulting from the ion-host interactions. For increase in efficiency of a given device, excitation efficiency needs to be increased. The quantum efficiency of a material system is given as a ratio of the emitted to absorbed photons and varies between 0 to 1. The vibrational energy of the host material is lower if the non-radiative contribution to electron decay is less, which ultimately increases the quantum efficiency. Therefore, choosing a host material is an important step in the fabrication of optical devices.

Fluorides emerge at an upper hand as host materials due to their low intrinsic vibrational energies which extend transmission to the far ultraviolet and infrared spectral regimes in luminescent materials (Wang et al., 2006). The interaction between rare earth (RE) ions and host material is important, as well as the luminescent efficiency of the materials. Lanthanum tri-fluoride, LaF$_3$, is a very suitable host because the RE$^{3+}$ can easily substitute for the La$^{3+}$ of the same valence, (Chen et al., 2008). The vibrational energy of LaF$_3$ is reported to be ~350cm$^{-1}$, has a high RE
solubility with significant environmental and thermal stability. Ground state has been established to be the corner stone for comprehension of the important properties of materials which provides important knowledge for material applications.

2.3 BaF$_2$ and BaF$_2$:La

It has been established in various studies that the electronic structure of BaF$_2$ crystals differs from that of other alkaline-earth fluorides in that BaF$_2$ has an energy gap between the occupied states of the anion and cation: which is less than one-half of the main band gaps, (Kuznetsov et al., 2003). It is due to this energy gap that BaF$_2$ is a fast scintillator making it the most studied alkaline earth fluoride. Although BaF$_2$ suffers from slow luminescence, it has been established that this can be improved by doping it with rare earth elements such as La, (Nepomnyashikh et al., 2001).

Fluorite structures may be disarranged either by thermal activation (intrinsic conductors) or by doping with trivalents (extrinsic conductors) for example lanthanides. Therefore, these crystals become perfect candidates for investigation of the mechanism of ionic transport in crystalline materials. Lanthanide elements are generally defined as those in which the 4f orbitals are progressively filled. Current notable commercial use of lanthanides is in electrodes of batteries of hybrid vehicles. Other lanthanides such as, cerium (the most abundant of the rare earth elements) are most notably known for their use in catalytic converters; Europium (as well as Terbium) is widely used as a phosphor in color television tubes and has more recently been used as an anti-counterfeiting phosphor in the European Union’s paper currency; (Sata et al., 2000).
Calcium fluoride, strontium fluoride and barium fluoride are alkaline earth elements that possess similar characteristics and have been studied for various properties. Their cubic lattice structure enables transmission for a wide range of wavelengths and as well indicates independence of absorption from induced polarization. The cubic fluoride structure also allows for the aggregation and clusters of RE$^{3+}$ ions, making interactions strong and distance between the active ions short (Petit et al., 2006), implying a propensity for ease of energy transfer when the materials are co-doped with differing RE$^{3+}$ ions. Barium fluoride, BaF$_2$, is found to have transparency in the visible and near-IR region, (Lian et al., 2004). In addition, BaF$_2$ has slight solubility in water and is non-hygroscopic, and due to its cubic structure, has one refractive index which can be exactly matched to that of glass or polymer matrix material to avoid significant light scattering, making it desirable for use as composites.

Lanthanum is the most effectively used dopant in BaF$_2$ and it improves characteristics of BaF$_2$ including; mechanical strength, radiation, resistance and density. It has been established that BaF$_2$ exhibits high superionic conductivity through incorporating of appropriate impurities into the lattice or the introduction of an interface that causes the redistribution of ions in the space charge region, (Sata et al., 2000). The incorporation of lanthanum affects the valence band of barium fluoride where extra states can be created in the band structure, (Nepomnyashikh et al., 2001). These effects can be studied through computational methods. The electronic structural properties of La doped BaF$_2$ were studied by periodic density functional theory (DFT) calculations as implemented in linear combination of atomic orbitals (LCAO) approximation. LCAO–DFT approximation involves the linear combination of the Gaussian orbitals and were employed in the construct of the localized atomic basis,
which then constructed the Bloch functions by combining linearly with the plane-wave phase factors. The calculations based on this framework were noted to provide good description of electronic excitation properties though the approach is not reliable in describing the band structure of BaF$_2$ and other materials.

Experimentally, CaF$_2$, SrF$_2$, BaF$_2$, density of states for intra-band transitions were studied by photoelectron spectrometry (Garcia et al., 2005). The laser absorption spectra techniques were used to analyze the impact of Eu defects on β-PbF$_2$ (PbF$_2$:Eu$^{3+}$) versus the electronic excitation spectra and dielectric relaxation (Labeguerie et al., 2006). The mixture of β-PbF$_2$ and CdF$_2$ crystals absorption coefficients were reported by spectrophotometry measurements. However, experimental results obtained on the electronic structure of BaF$_2$:La are still not in agreement with some theoretical results because of the errors involved in these calculations.

2.4 Structural and Electronic Properties Calculations

Interaction of electrons with atomic cores affects both the physical and chemical properties of a system. The treatment of electron-electron interactions is the major source of difficulty in the interpretation of these properties since the interactions are inseparable or treated without approximation. Schrödinger equations well solved for a specific system can be differentiated from one to other forms of modeling approaches since they are majorly \textit{ab-initio} in nature (Giannozzi et al., 2001). The solution of Schrödinger equations remains a difficult task. Exact solutions of the equation, in general, can only be solved if time is scaling exponentially with system size (Giannozzi et al., 2001). This scaling precludes exact calculations for all but the
smallest and simplest of systems e.g., the hydrogen atom. The degree of accuracy and
the predictive power can be lost by the introduction of approximations which may be
used to reduce the equations to a form that can be solved.

The density functional theory (DFT) and computer simulation methods involved in
various solving of the Schrödinger equations have become more successful in
calculations involving electronic structure properties and other material properties
applicable to several systems relevant to the real world. In general, the density
functional and quantum chemical among other approaches that involve
approximations for the electron-electron interactions have been reported to limiting
the achievable accuracy in the calculations involved.

2.5 Elastic constants for LaF₃

Elastic constants majorly define mechanical and dynamical characteristics, especially
the stability and the stiffness of a material (Nyawere et al., 2014). These parameters
are sources of probing inter-atomic forces. Although LaF₃ belongs to the tysonite
structure, its mechanical properties were calculated within the hexagonal phase group
of crystals (Sin’ko & Smirnow, 2002). The elastic constants of LaF₃ have been
examined both experimentally and theoretically. Diniz and Paschoal obtained the
elastic constants of LaF₃ at 0 GPa using the shell-model method. Although the results
presented were comparable to the experimental work they had a big difference
compared to experimental results obtained earlier (Diniz & Paschol, 2007).
Unfortunately, these results are not the exact representation of the elastic constants
for C₁₄. LaF₃ is categorized to have a trigonal structure but the elastic constants were
obtained in the hexagonal symmetry framework (Benner, 2002). Zhenlong also
calculated the elastic constants of LaF$_3$ using CASTEP approach in DFT and the results were compared to the experimental results. On further calculations it was reported that at 0 GPa elastic constants for LaF$_3$ met mechanical stability requirements for the trigonal crystal (Zhenlong et al., 2014).

2.5.1 Elastic constants for BaF$_2$ and BaF$_2$:La

Barium fluoride (BaF$_2$) is an ionic crystal in the class of fluorites with a structure that consists of three transversing face centered cubic lattices (Lian et al., 2004). The calculations of the elastic constants for barium fluoride were focused on an non-polarizable model of non-flexible ions and predicted only part of the experimental C$_{12}$-C$_{44}$. This non-flexible (rigid ion) model did not explain clearly the relationship between the optical, dielectric and dispersion relations of some other ionic crystal. The shell model approach by Sobolev and others was introduced for the explanation of the dielectric constants in BaF$_2$:La and it acknowledged the ionic polarization (Sobolev et al., 2002) and thereafter it extends the incorporation of vibrational spectrum entirely. Elastic constants of BaF$_2$ have so far been studied in its cubic (most stable), orthorhombic and hexagonal phases using quantum espresso; results obtained were comparable with experimental and other theoretical results, (Nyawere et al., 2014).

In doped and pure fluorite structures, the calculation of elastic constants has provided important information. There are various models used to determine the elastic constant of BaF$_2$ and its dopants. Diffuse super-ionic transition temperature T$_c$ is as a result of reduced anion-Frenkel defect formation energy, which is caused by their binding energy.
An analogous model has been suggested for substitutional trivalent cations doped with fluorites (Dubinin et al., 2004). This model involves the impurity-stabilised clusters which are meant to bind interstitials resulting to a reduced T_c, while increasing the concentration of the dopant. Calculations in static lattices show that changes inelastic constants in some doped fluorites, specifically a decrease in C_{11}, are expected with anion Frenkel disorder. The results of T_c achieved from these measurements are comparable with other methods. The elastic constants for $\text{BaF}_2:\text{La}$ has been studied (Dubinin et al., 2004) and the achieved results for C_{44} have shown unusual behavior with the first region having the same slope to that of the pure crystal then followed by a decrease in linear region. From these results, an indication of a decrease in C_{11} and C_{44} which was part of the same process was noted. The fact that C_{44}, in Ba and LaF_3 also underwent a decrease is significant. These results have been compared in this work.

2.6 Defects and Defect Formation Energy

Theoretical study of these defects has been done successfully in BaF_2, (Nyawere et al., 2014). Fluorides belong to a very special class of compounds with interesting physical properties, crystallizing in a variety of structures, with many applications such as optical coatings among many other technological applications (Morris et al., 2001). Properties, such as crystallization in the fluoride structure has been explored widely although a few questions regarding the structure-property relationships are still being raised.
It has since been established that doping of BaF\(_2\) with La increases its performance as a material in its various applications but the physics behind this is still not yet clear. Experimental and theoretical attempts regarding the investigation of the properties of BaF\(_2\):La has been done. Calculations have been carried out on formation energy and the structure of BaF\(_2\):La for the equilibrium positions of nearest neighbor (NN) and next nearest neighbor (NNN) complexes have been achieved through molecular statics (MS) approach, (Sobolev et al., 2002). The result obtained in MS methods has a basis of various forms of the ion–ion interaction description. The band structure and density of states (DOS) calculations for BaF\(_2\):La crystals for the NNN structure was achieved through minimizing of the total energy. The La\(^{3+}\) impurity introduced in BaF\(_2\) results in the appearance of the fluorine interstitial, (F\(_{\text{i}}\)) of the 2p state is linked to the upper electronic band (Sobolev et al., 2002).

2.7 Optical properties of BaF\(_2\) and BaF\(_2\):La

Rare earths are used as dopants in various materials, as defined by the application such as in barium fluoride. Regardless of the type of use, the final characteristics of luminescent devices are dependent upon the optical properties resulting from the ion-host interactions. Fluorides emerge as advantageous host materials due to their low intrinsic vibrational energies which extend transmission to the far ultra-violet and infrared spectral regimes. This minimally quenches the excited state of rare earth ions and has high transparency over a wide wavelength range. It also has high ionicity and fundamentally reduced absorption when compared to oxide based materials, (Garcia et al., 2003). Lanthanum tri-fluoride, LaF\(_3\), is a very suitable host material because the RE\(^{3+}\) can easily substitute for the La\(^{3+}\) of the same valence (Chen et al., 2008). The cubic fluoride structure also allows for the aggregation and clusters of RE\(^{3+}\) ions
which makes the distance between the active ions short and interactions strong (Petit et al., 2006), implying a propensity for ease of energy transfer when the materials are doped.
CHAPTER THREE

MATERIALS AND METHODS

3.1 Introduction

Most materials are termed as solid state materials which can be described as many-body systems consisting of electrons and nuclei which are interacting electromagnetically. Quantum many body problems are reduced to interactions of electron systems with the movement of the potential of the nuclei at fixed positions, this is referred to as first-principles method (Burke et al., 2007). Density functional theory is among the common methods where the electronic structure calculations are done at ground state in quantum chemistry and solid state physics (Clark et al., 2005). This theory gives solutions to the Schrödinger equation for many-body or many-electron systems as a function of charge density, rather than solving the wavefunction. In many-electron (many-body) systems, the exchange-correlation also termed as self-interactions relations, cause electrons to be indistinguishable, leading to the fact that energy and forces are impossible to be solved analytically. DFT provides a balance between computational cost and accuracy that allows quantitative data to be computed for any material model (up to thousands of atoms) (Clark et al., 2005). Therefore, the computational work based on DFT is well suited to a variety of material science applications such as surface science and catalysis, structural metals and earth sciences, (Kang et al., 2002).

The aim of the first-principles method is to come up with a solution to the Schrödinger time-independent, non-relativistic equation. This equation for such systems is given as:

\[H \varphi_k (r_1 \sigma_1, \ldots, r_N \sigma_N) = E_k \varphi_k (r_1 \sigma_1, \ldots, r_N \sigma_N) \]

(3.1)
where total Hamiltonian H is;

$$H = -\sum_i \frac{\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} \sum_{i<j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} - \sum_i \frac{Z_i e^2}{|\vec{r}_i - \vec{R}_i|} - \sum_i \frac{\hbar^2}{2M_1} \nabla_i^2 + \frac{1}{2} \sum_{i<j} \frac{Z_i Z_j}{|\vec{R}_i - \vec{R}_j|}$$ \hspace{1cm} (3.2)

where ψ is the full wavefunction for all the particles in interaction (electrons, nuclei and electromagnetic field). E_i is the corresponding energy to the wavefunction ψ and they obey Pauli Exclusion Principle. In equation, (3.2), the first, second and third terms represent kinetic energy of the electrons, the electron-electron Coulomb interaction and the electron-nuclei interaction respectively. The fourth term is nuclei kinetic energy and the last term is the nucleus-nucleus interaction. The symbols \vec{r}_i is the electron position, \vec{R}_i refers to nuclei positions, m is the electron mass, e electron charge, M_1 are the nuclei masses, Z_i nuclei charges and \hbar is the reduced Plank constant.

The Born-Oppenheimer approximation (Cottenier, 2013) assumes that the nuclei are much heavier when compared to those of electrons and hence should be much slower.

Hence, they can be relatively considered to be “frozen” or at rest in fixed positions. Hence one could also assume that the electrons are in equilibrium to the nuclei at every instant. This approximation solves the problem with an assumption that the nuclei is much heavier compared to electrons that are lighter and therefore will their movement is slower, then the electronic and nuclear motion are easily separated.

Nuclei are treated to be stationary and the electrons move relative to them. Equation (3.1), can be separated into two independent eigenvalue problems such that the electron and nuclei wave functions are products of the total wave function

$$\varphi(\vec{r}, \vec{R}) = \psi_e(\vec{r}, \vec{R}) \times \psi_{nucl}(\vec{R})$$ \hspace{1cm} (3.3)
And the electron wave function depends on the nucleus co-ordinates. Given that the nuclei are now treated to be stationary, we neglect the nuclei problem since it can be incorporated later. The Hamiltonian in eqn. (3.3) can be written as:

\[H = T_e + V_{en} + T_n + V_{nn} \] \hspace{1cm} (3.4)

3.2 Hohenberg-Kohn Theorems

The foundation of density functional theory was laid by Hohenberg and Kohn (HK) (Hohenberg & Kohn, 1964) in 1964. They established a direct relationship between the potential \(v(\vec{r}) \) and electron density \(n(\vec{r}) \) at ground state, in such a way that the infinitely complex many-body problem of solving the Schrödinger equation for \(N \) particles can be replaced by an equation for the density \(n(\vec{r}) \). According to Hohenberg and Kohn, it is not possible for a system with electrons to produce similar ground-state electronic charge density \(n(\vec{r}) \) when two different potentials act upon them. The total Hamiltonian for this many-body is implied by \(n(\vec{r}) \). Hence all the excited states and their energies are also implied by \(n(\vec{r}) \). Hohenberg-Kohn theorem therefore confirms that by using \(n(\vec{r}) \) rather than wave-functions the details of many-body Physics can be understood (Giovanni, et al., 1996). Hohenberg-Kohn also showed that a universal functional \(F[n(\vec{r})] \) exists and it is an electron density \(n(\vec{r}) \) functional whose actual energy ground state at \(E[n(\vec{r})] \) is given by:

\[E[n(\vec{r})] = F[n(\vec{r})] + \int n(\vec{r})V_{eu}(\vec{r})d^3r \] \hspace{1cm} (3.5)

The energy \(E[n(\vec{r})] \) is minimized under the constraint that the integral \(n(\vec{r}) \) is equivalent to the sum of electrons. The minimum value coincides with energy at ground-state. Hence based on these theorems, the Hamiltonian value expected in eqn. (3.5) is written as
\[\langle \varphi | H | \varphi \rangle = E[n(\vec{r})] \]

(3.6)

where \(E[n(\vec{r})] \) is total energy functional at ground state and \(n(\vec{r}) \) is the electron density. Once the correct density is known, it therefore follows that the properties of the system can be calculated at the ground state. The energy functional is minimized to calculate the ground state density correctly:

\[E_0 = \frac{\delta}{\delta n} E[n(\vec{r})] = E[n_o(r)] \]

(3.7)

Equation (3.7) gives the basis foundation of density-functional theory (Parr & Yang, 1995). This allows large simplifying of concepts in the quantum-mechanical problem in search of ground state properties for a system interacting with electrons. This replaces the ordinary description based on wave functions (which depend on 3N independent variables, \(N \) being the number of electrons) with one which depends only on three variables and charge density. However, there are two major impediments to straight forward application of this theorem. The first form of the \(F \) functional is the unknown and the second requirement is fulfilled if the function \(n(\vec{r}) \) is to be considered an acceptable ground-state charge distribution (and hence the domain of the functional \(F \)) is poorly characterized. The second part of the problem is never considered but Lagrange multipliers are used for normalization of the charge density effectively. The first part of the problem was addressed by Kohn and Sham (Kohn & Sham et al., 1965) as discussed below.

3.3 Kohn-Sham Approach \(E_{xc} \)

This approach proposed an approximated functional in many body electron systems because the functional \(F[n] \) was not practical. It involved an auxiliary system of non-interacting electrons moving in an external potential \(V_{KS} \) whose ground state
electron density was similar to that of real electron system interaction. The kinetic energy of the system and the electron density were exactly known from the orbital. The universal functional for a non-interacting system is given by;

$$ F[n(r)] = T_s [n(r)] = \langle \varphi_{ks} | T^* | \varphi_{ks} \rangle $$

(3.8)

Total energy functional is denoted as:

$$ E_{ks} [n(r)] = \min T_s [n(r)] + \int V_{ks} (r)n(r)dr - \mu' \left[\int n(r)d^3r - N \right] $$

(3.9)

μ' is the Lagrange multiplier that ensures the conservation of the number of electrons.

The V_{KS} function can be obtained as follows:

From the interacting system, the universal functional is written as;

$$ F[n(r)] = T_s [n(r)] + E_H [n(r)] + E_{xc} [n(r)] $$

(3.10)

At ground state:

$$ 0 = \frac{dE_{GS}}{dn} = \frac{dT_s}{dn} + V_H n(r) + V_{xc} [r] + V_{ext} (r) - \mu $$

(3.11)

Similarly, for auxiliary system, at ground state:

$$ 0 = \frac{dE_{GS}}{dn} = \frac{dT_s}{dn} + V_{ks} (r) \pm \mu' $$

(3.12)

From the two equations the potential $V_{ks} (r)$ can be obtained

$$ V_{ks} (r) = +V_H n(r) + V_{xc} (r) + V_{ext} (r) $$

(3.13)

The self-consistent (Kohn-Sham) equations can be expressed as;

$$ \left(-\frac{\hbar^2}{2m} + V_{ks} (r) \right) \varphi_{ks} (r) = \varepsilon_k \varphi_{ks} (r) $$

(3.14)

$$ V_{ks} (r) = +V_H n(r) + V_{xc} (r) + V_{ext} (r) $$

(3.15)
\[n(r) = \sum_{i \in \text{exc}} |\varphi_{ik}(r)|^2 \] \hspace{1cm} (3.16)

where \(\epsilon_k \) is Lagrange multiplier for normalization. \(\nu_{\text{eff}}(\vec{r}) \) contains external potential, Hartree energy (electrostatic energy) and exchange-correlation. The exchange-correlation potential is defined as:

\[V_{xc}(r) = \int \frac{n(r)}{|r - r'|} dr \] \hspace{1cm} (3.17)

\[V_{xc}(r) = \frac{\partial E_{xc}(n(r))}{\partial n(r)} \] \hspace{1cm} (3.18)

All equations from Kohn-Sham are solved self-consistently. The flow chart, in figure 3.1 illustrates a clear computational procedure for any DFT-based calculation.
The procedure requires an input, which is a geometrical arrangement of atoms determining the overall atomic potential \(v(r) \), and the atomic number \(Z \). It begins with a guess at the start for the electron charge density, the exchange-correlation potential and the Hartree potential are then calculated from it (Payne et al., 1992). A typical computational procedure is illustrated in Figure 3.1:

![Figure 3.1: A typical computational procedure](image)

The procedure requires an input, which is a geometrical arrangement of atoms determining the overall atomic potential \(v(r) \), and the atomic number \(Z \). It begins with a guess at the start for the electron charge density, the exchange-correlation potential and the Hartree potential are then calculated from it (Payne et al., 1992). A typical...
self-consistency is achieved when the generated charge density is smaller than the chosen values, (Payne et al., 1992). Minimum energy is then obtained from the electronic charge density \(n(r) \) which gives the minimum energy guessed. The density which is a function of \(r \) is computed and then used as another function for computing the Hartree potential and the exchange-correlation potential. The result of \(V_H(r), V_{xc}(r) \) and \(V_{nuc}(r) \) gives the effective potential \(V_{eff}(r) \)

Therefore, the Hamiltonian of the system is equal to \(V_{eff}(r) + K.E \) that is:

\[
H\phi_i(r) = \left[-\frac{\hbar^2 \nabla^2}{2} + V_{eff}(r) \right] \phi_i(r) = \epsilon_i \phi_i(r)
\]

(3.19)

where \(\epsilon_i \) is the minimum energy.

3.4 The exchange correlation functionals

Once the Kohn-Sham equation is obtained, computing of each part of DFT energy becomes easy, except for the “exchange-correlation”. This complicated exchange correlation energy functional can be obtained through various approximations

3.4.1 Local Density Approximations (LDA)

This is one of the easiest and the founder of all the other approximations. The fundamental concept is the application of the exact exchange-correlation energies of the homogeneous electron gas as an approximation to the energies of inhomogeneous systems. The approach incorporates an exchange-correlation functional \(E_{xc}^{LDA} \) written in the form:

\[
E_{xc}^{LDA} = \int n(\vec{r}) E_{xc}^{hom}(n(\vec{r})) d\vec{r}
\]

(3.20)
\(\varepsilon_{xc}^{hom} \) is the exchange-correlation energy per particle of a homogeneous electron gas with density \(n(r) \). Defining \(E_{xc}^{LDA}[n(r)] \) allows the calculation of the exchange-correlation potential involved in this method.

3.4.2 Shortcomings and Improvements of LDA

LDA has a good performance so far in the calculations taken, however its limitation should be put in consideration especially in applications. It performs well in systems with slow ratio in density and their chemical properties are well produced. LDA is however not accurate in systems that have independent particle that tend to break down. In transition metal oxides \(XO \) (\(X=Fe, Mn, Ni \)) for instance, which belong to Mott insulators, they are perceived to be semiconductors or metals by LDA.

LDA also gets the ground state for many simpler cases wrongly. For example, the titanium atom ground state properties are wrongly predicted using LDA approach. The van der Waals are not considered in LDA which makes the hydrogen bonding wrongly described, yet in Biochemistry bonding is very important and this has led to a lot of discrepancies in theoretical and experimental data. This is particular in the DNA structure which depends solely on hydrogen bonding. LDA can be improved by the inclusion of gradient corrections that makes up a functional comprising of the density and its gradient referred to as the generalized gradient approximation (GGA). Although LDA has worked excellently for several systems sometimes it is necessary to use other functions. There are many attempts to go beyond LDA by expanding the exchange-correlation functional in a series of power including higher order terms.
3.4.3 Generalized Gradient Approximation (GGA)

This method is a continuation of LDA where it takes in account both the density of uniform electron gas and its deviation from homogeneity by considering the gradient of charge densities. This exchange-correlation energy is written in the form:

\[E_{xc}^{GGA} = \int \varepsilon_{xc} n(r) \nabla n(r) dr \]

(3.21)

The GGA exchange correlation potential is written as:

\[V_{xc}(r) = \frac{dE_{xc}^{GGA}}{dn(r)} = \frac{1}{n} \sum_{\alpha=1}^{3} \alpha \left(\frac{dF_{xc}^{\alpha}}{d(a_n)} \right) / n = n(r) \]

(3.22)

where \(F_{xc}(n, |\nabla n|) = E_{xc}(n, \nabla) n \), \(\alpha \) stands for gradient component GGA improved significantly the LDA’s description of the binding energies of real systems. However, both LDA and GGA have a limitation in describing the correct electronic properties of some classes of materials for instance in the transition metal oxides and strongly correlated systems.

3.4.4 Hybrid functionals and GW approximation

Semiconductors are vital technological materials with numerous applications and to obtain first principles approaches that can give and illustrate their properties accurately is very important. It has been established that band gaps obtained by both LDA and GGA are underestimated for semiconductors, while the Hatree-Fock methods overestimates their band gaps. It has been proposed that these challenges in band gaps can be overcome by use of Hybrid functionals. This was done by obtaining suitable functionals through suitable mixture of the local or semi-local DFT exchange energy functionals and the non-local Hartree-Fock exchange energies. HSE06 functionals have been proposed to solve the band gaps challenges (Paier et al., 2006).
3.5 Implementation

3.5.1 Plane waves

The Born-Oppenheimer approximation and density functional theory have been used as a link between the nuclei and electrons interactions commonly known as many body problem and the single particle problem moving with an effective potential for a set of stationary nuclei. The common approach is used when the single particle eigenstates is expanded into a basis set of plane waves. The use of plane waves is due to the fact that the eigenstates are termed to be the exact of the homogeneous electron gas and are not specified to any particular atom. The plane-waves expansion of the Kohn-Sham wave function is important in the total energy calculations of solids and it is periodic. Now the solutions of this single-particle Schrödinger equation with a periodic potential, is itself periodic and obeys the Bloch’s theorem.

\[\psi_{kj}(r) = \mu_{kj}(r) e^{i\mathbf{k} \cdot \mathbf{r}} \]

(3.23)

\(\mathbf{k} \) is the crystal momentum and \(j \) the band index classifies the electronic states with same \(\mathbf{k} \)-vector and these \(\mathbf{k} \)-vectors are defined within the first Brillion Zone. \(u_{kj}(r) \) has the periodicity of the crystal which can be solved using a basis set.

\[\phi_j(r) = \sum_G C_j, G + k e^{i(K+G) \cdot r} \]

(3.24)

\(G \) is defined by the equation \(G \). \(b = 2\pi m, \) \(b \) are the lattice vectors of the crystal and \(m \) is an integer. Therefore the expansion leads to

\[\phi_j(r) = \sum_G c_j, K + G e^{iK \cdot r} \mu_{kj}(r) \]

(3.25)

Using the Bloch states, the Kohn-Sham equation becomes:

\[\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{eff}}(r) \right] \phi_j(r) = \varepsilon_j \phi_j(r) \]

(3.26)
Defining \(V_{\text{eff}}(r) \) as:

\[
V_{\text{eff}}(r) = V_{\text{ext}}(r) + V_H(r) + V_{\text{ext}}(r)
\]

(3.27)

where \(V_{\text{ext}} \) represents the external potential of the nuclei, \(V_H \), the Hartree and \(V_{\text{xc}} \) the exchange correlation potential.

And

\[
n(r) = \frac{2\Omega}{2\pi^2} \sum_j \left| \phi_{kj}(r) \right|^2 \Theta(E_f - e_{kj}) I^3 k
\]

(3.28)

Then spins up and down i.e. \(\uparrow \) and \(\downarrow \) are taken care of by the factor 2 and \(\Theta \) is a step function which is either 1 or 0. \(E_f \) is the highest energy level occupied by single particle which is defined by the number of electrons \(Ne \) in the unit cell. This energy is termed as Fermi energy

\[
\int n(r) d^3 r
\]

(3.29)

Electronic wave functions are expanded into k-points that are described in form of discrete set of plane waves; this is done according to Bloch’s theorem. This theorem merges the number of electronic states at infinite problem to finite of calculating finite number of electronic states at an infinite number of k-points extended over a single unit cell. Although, this could be a minor improvement since there is need for an infinite number of calculations for the different k-points. But the electronic states at k-points close to each other are similar and therefore a possibility of representing the wave functions of a specific point of k-space by the wavefunction at a single k-point.
3.5.2 Reciprocal Space (Brillion Zone) and k-Points

In materials research, DFT is used for calculations in a system with periodic atoms in space. The cell, containing these atoms, which is repeated periodically, is called the supercell. These supercells are identified with the lattice vectors $a_1, a_2, \text{and } a_3$. To solve Schrödinger equations for a periodic system, the solutions must be in line with Bloch’s theorem in which the solutions are written as:

$$\varphi_k(r) = e^{i k r} \mu_k(r)$$ \hspace{1cm} (3.30)

where k is a wave vector associated to the Brillion first zone, r represents the position vector that defines a point in space, and $\mu_k(r) = \mu_k(r + n_1 a_1 + n_2 a_2 + n_3 a_3)$ for the integers $n_1, n_2 \text{ and } n_3$ and are periodic functions and the space is periodic with a super cell of same periodicity. Bloch’s theorem indicates that the Schrödinger equation can be solved independently for any value of k. The mathematical problems involved in DFT are simpler to solve with respect to k than r, (Sholl & David, 2009).

Because the expansion of $e^{i k r}$ express the original plane waves and calculations related in this equation are defined as plane-wave calculations. Plane waves allow for taking advantage of the fast Fourier transformation (FFT), hence it is the most numerically convenient basis set that can be used in DFT. The vector r represents the real space, and vector k is the reciprocal space (or k space), (Sholl & David, 2009).

In k space, a unit cell has minimum volume containing all information of the material. The concept of the primitive cell in k space follows the Wigner-Seitz cell, in which the reciprocal lattice vectors are easily defined just like in real space. Cells in k space are often referred to as the Brillion zone, which contains several k-points with special significance of symmetry. These points are given independent identities. Gamma point (Γ point) is the most important point, which is the center of the reciprocal space.
(i.e., \(k = 0 \) at the \(\Gamma \) point), (Sholl & David, 2009). The convergence of k-point mesh \((n_i \times n_i \times n_i)\), where \(n_i = 1, 2, 3 \) with respect to total energies (for the cubic structure of the BaF\(_2\)) is shown in the figure 3.2.

![Convergence graph for K-points](image)

Figure 3.2: Convergence graph for K-points

DFT calculations require significant computational effort; therefore, integration of the mathematical equations cannot take place over the entire \(k \) space. Monkhorst and Pack, (Monkhorst & Pack, 1976) developed a solution, wherein a grid of points in \(k \) space is considered. For a super cell that has the same length in all directions (e.g., a cubic lattice), similar number of \(k \)-points are used in various directions. Calculation is then labeled as \(M \times M \times M \) \(k \)-points. Generally, it is expected that using \(M \) will give more accurate results than \(N \), if \(M > N \). However, practically, to decide how many \(k \)-points will be used depends on the material system. If the calculated total energy is almost independent of the number of \(k \)-points, then it is expected that all calculations
in \mathbf{k} space are optimized well, and thus there is no need to use a large set of k-points, (Monkhorst & Pack, 1976).

3.5.3: Pseudo-Potential

The atomic potential $V(r)$ describes the electrostatic interaction of the nucleus with the surrounding electrons. While each atom contains core electrons and valence electrons, the valence electrons are the ones responsible for the chemical bonding in atoms. The pseudo-potential method is developed capable to handle the valence electrons only. This approach is to cut computational cost in calculations (Mattsson, 2011). In this method, the “fixed” core electrons are eliminated. Inside the core region, the valence electron wave function is due to orthogonality to the core electron wave function described by a smooth node-less wave function while this is matched with the true wave function outside the core region (Smallwood et al., 2006). A calculation without the frozen core is called an all-electron calculation. An illustration of matching wave functions in a pseudo-potential approach is shown in Figure 3.3.

![Figure 3.3: Pseudopotential of an atomic electron wave function.](image)
The arrows indicate the cutoff radius of the wave functions, where the left of the arrow is fixed as the “frozen core” and the wave function is replaced by a smooth node-less function. To the right of the arrow, the pseudo-wave function matches the all electron wave function. The same behavior is shown, where the cutoff radius is set at a different value. This indicates that each valence state is set with a specific cutoff radius in the pseudo-potential approach. The pseudo-potential approach has increased the performance of DFT because the smooth functions can be expanded easily in plane wave calculations, (Sholl & David, 2009). Moreover, the use of pseudo-potential has cut down the computational costs since it eliminates the interactions from the core electrons.

3.5.4 Cut-Off Energy

In DFT methods, the energy associated with plane wave basis is very vital for the calculations that are involved. The optimization of cut-off energy in accordance to the total energy is examined at a constant k-point-mesh and experimental lattice parameters are achieved from the already obtained crystallographic databases. The cut-off optimized energy curve(for the structure of LaF$_3$) is shown in the Figure 3.4.

Figure 3.4: Cut-off optimized energy curve of LaF$_3$
It is advised that the values chosen may be above the default cut-off energy (30Ry) which may give accurate results. Energies picked from very high energy may not be advisable because they are associated to hiking the computational costs not considering if the results are accurate.

3.6 Structural Properties of Materials

Different materials have different structures that can be categorized by the magnitude of several features in general. Majorly, these features are grouped as follows: in the atomic structure, this includes features that are invisible, which include feature like the types of bonding between the atoms and the arrangement of atoms (Lundstrom, 2002). Micro structure includes features that are visible by use of external devices for instance the microscope. These atomic structures ideally affect the optical properties chemical, thermal, electrical, magnetic, and the physical aspects of a material. Although macrostructure and microstructure are likely to affect these properties, they however affect elastic properties adversely and the chemical reaction rates of the material involved. Material properties open up the structure of the material. This may be in line with the strength of metals, which in an engineering world that proposes that atoms are bounded by strong bonds and hence strong hints on the high chances of material applications in the real world (Manjula et al., 2016). The arrangement of atoms and the type of atoms in a material are vital for the understanding of the structure of a material.

From microscopic point of view, the structural properties are vital in the understanding of solids properties. We have done computation of the lattice parameters for tysonite LaF$_3$ structure. Total energy of LaF$_3$ was obtained in terms of volume unit-cell around
the equilibrium cell volume \(V_0 \) and then the E-V points obtained were fitted into the equation of state (EOS) to obtain derived structural properties. The Birch-Murnaghan third-order (Murnaghan, 2017) equation of state written as:

\[
\Delta E(V) = E - E_0 = B_0 V_0 + \left[\frac{V_0}{B_0} + \frac{1}{1 - B_0} + \frac{V_0'}{B_0(B_0 - 1)} \right] \]

(3.31)

where \(E_0 \) is the equilibrium energy, \((B_0) \) is the bulk modulus; \((B_0') \) is the first derivative of materials, when the constants differ; Strains tend to be introduced into the layer ones the parameters are different leading to hindrance of epitaxial growth of thicker layers without defects (Ravindran et al., 1998).

3.7 Electronic Properties

Electronic structure of a material can be related to the movement of electrons in an electrostatic field generated by nuclei that are stationary (Diebold, 2003). Electronic properties describe the wave functions of the electrons and the energies involved. By solving quantum mechanical equations, electronic structural properties of a material are achieved; the band structure and density of states among others that can describe electronic properties vividly.

3.7.1 Band structure and Band gaps

The range of energy that electrons can posses inside a solid can be used to give a band structure description of a solid. This energy is associated to energy bands, allowed bands, or forbidden bands which are basically ranges of energy which may not be also termed as band gaps (Scandolo et al., 2005). Band gaps can be related to these ranges of energy that are free from any band that makes up energy bands of finite widths. The bands have different widths. The width of different bands depends on the overlap degree of atomic orbitals from their arrangement. The range of energy may not be
covered fully by any two adjacent bands due to their width. For instance, $1s$ electrons related to the core orbitals are narrower as a result of small overlap with the atoms surrounding them. This phenomenon has led to increase in band gaps between the core bands. Bands at higher levels includes bigger and bigger orbitals with most overlap, becoming wider and wider in increasing steps at high energy until there are no band gaps at high energy depending on the degree of overlap in the atomic orbitals from which they arise. Band gaps are categorized either as direct band gaps or indirect band gaps. Particular crystal momentum (k-vector) in the Brillion zone distinguishes between energy state at minimum in the conduction band and the energy state in the valence band maximum. For similar k-vectors then this becomes a direct band gap. The momentum of electrons and holes are similar in both the conduction band and the valence band that is an electron can emit a photon directly. Any differences in k-vector then an indirect band gap is formed and this means that a photon cannot be emitted and therefore an electron must pass through an intermediate state and transfer momentum to the crystal lattice (Granqvist & Hulta, 2002). Direct and indirect band gaps are illustrated in figures 3.5 and 3.6
3.7.2 Density of states (DOS)

Density of states of materials can be best defined as the number of states divided by the energy interval for every single energy level that electrons available can occupy. Apart from special cases such as the atoms or molecules in gas phase systems, the
density distributions are continuous not discrete like a spectral density. A high density of states at a specific energy level means that the states available for occupation are many. Zero density of states refers to no states that can be occupied at any energy level. Generally density of states is an average of space occupied by the system over time domains.

3.7.3 Electronic Properties of BaF$_2$ and BaF$_2$: La

A supercell corresponding to 2 x2 x 2 conventional unit cells using phonopy code (Atsushi & Isao, 2015) which translated into 24 atoms was built. The supercell was used for defect calculations to prevent the contribution of defect-defect interaction from the calculation of formation energy. One barium atom was substituted with a lanthanum atom and one fluorine atom was placed in an interstitial position in BaF$_2$ supercell for charge compensation. The influence of La as well as the interstitial fluorine on the BaF$_2$ band structure and the elastic constants were studied and compared with the data of BaF$_2$. Wigner-Seitz cell may be defined as a cluster of points that surrounds a specified point in a given region that are nearer the lattice point than to any other points. The Brillium Zone (BZ) gives a thorough geometrical definition of diffraction conditions such as the electron energy band theory.

A supercell has an advantage that the electronic structure of the host crystal is the same. That is, the calculations for a supercell which is simply filled with the host crystal without a defect reproduces the same electronic structure properties like band structure of a single crystal. Electronic band structure of BaF$_2$:La has also been investigated at the high symmetry points of the barium fluoride in its cubic phase within the Brillium zone. The band structure characteristics of tysonite LaF$_3$ were also
studied. Band gap and Density of states (DOS) helps in the understanding of how superconductivity and superionic transitions occur in LaF₃ hence mechanism to improve conduction in all faculties of its application can be studied. For the band structure of LaF₃ for a tysonite phase the high symmetry points used were Γ-M-K-Γ-A-L-H-A/L-M/K-H. The X-window Crystalline and Molecular Structure Visualization (XCrysDen) program was used to come up with these points and path.

3.7.4 Elastic constants of LaF₃

Elastic constants majorly define mechanical and dynamical characteristics, especially the stability and the stiffness of a material. The inter-atomic forces have been probed by using these parameters (Sinko & Smirnow, 2002). Although LaF₃ belongs to tysonite structure, its mechanical properties were calculated within the hexagonal phase group of crystals, with six independent elastic constants. Ab initio calculations have bared a lot of fruits in obtaining elastic properties indifferent materials especially theoretically (Shrader et al., 2014). For instance, elastic constants are generated from energy variation by application of a little strain to the converged lattice configuration. This energy in consideration can be written as:

\[\Delta E = \frac{V}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} C_{ij} e_i e_j \] (3.32)

V= volume of the original lattice cell, \(\Delta E \) = energy increase from the strain with vector \(e = (e_1, e_2, e_3, e_4, e_5, e_6) \) and \(C \) = matrix of the elastic constant. For the hexagonal phase, its primitive vectors can be denoted as:
\[
\begin{pmatrix}
a_1 \\
a_2 \\
a_3 \\
\end{pmatrix} = \begin{pmatrix}
\frac{\sqrt{3}a}{2} & \frac{1}{2}a & 0 \\
-\frac{\sqrt{3}a}{2} & \frac{1}{2}a & 0 \\
0 & 2 & c \\
\end{pmatrix}
\] (3.33)

\(a\) and \(c\) are lattice constants

A strain defined as \(e = (\delta, \delta, 0, 0, 0, 0)\) was applied to obtain \(C_{11} + C_{12}\):

\[
\frac{\Delta E}{V} = (C_{11} + C_{12})\delta^2
\] (3.34)

\(C_{11} - C_{12}\) was obtained using \(e = (0, 0, 0, 0, 0, \delta)\):

\[
\frac{\Delta E}{V} = \frac{1}{4}(c_{11} - c_{12})
\] (3.35)

\(C_{33}\) was then obtained using the strain \(e = (0, 0, \delta, 0, 0, 0)\):

\[
\frac{\Delta E}{V} = \frac{1}{2}C_{33}\delta^2
\] (3.36)

\(e = (0, 0, 0, \delta, \delta, 0)\) was used to obtain \(C_{44}\):

\[
\frac{\Delta E}{V} = (C_{44})\delta^2
\] (3.37)

Under the condition of hydrostatic pressure, \(e = (\delta, \delta, \delta, 0, 0, 0)\), the bulk modulus was also calculated by the equation:

\[
B = \frac{2}{9} \left(C_{11} + C_{12} + 2C_{13} + \frac{C_{33}}{2} \right)
\] (3.38)

\[
\frac{\Delta E}{V} = \frac{9}{2}B\delta^2
\] (3.39)

Hence \(C_{13}\) is determined.

Appropriate averaging procedures can be used to obtain isotropic elastic constants. For example the bulk, shear and Young modulus. The three commonly used averaging methods implemented in Thermo_pw code are the Voigt approach (Voigt, 1928), which assumes a uniform strain, while the Reuss procedure validates
the case of uniform stress (Reuss, 1929). The combination of the two approaches results to Voigt and Reuss moduli which are represented as stiffness constant. The bulk and shear modulus in the Voigt approach:

\[
B_v = \frac{1}{9} \left[C_{11} + C_{12} + C_{13} + 2(C_{12} + C_{13} + C_{23}) \right]
\]

(3.40)

\[
G_v = \frac{1}{15} \left[(C_{11} + C_{22} + C_{33}) - (C_{12} + C_{13} + C_{23}) + 3(C_{44} + C_{55} + C_{66}) \right]
\]

(3.41)

According to the Voigt-Reuss-Hill (VRH) approximation (Hill, 1952) the shear and bulk moduli of the polycrystalline material were approximated as arithmetic mean of the Voigt and Reuss limits:

\[
B_{VRH} = \frac{1}{2} (B_v + B_R)
\]

(3.42)

\[
G_{VRH} = \frac{1}{2} (G_v + G_R)
\]

(3.43)

From bulk modulus and shear modulus the Young modulus and Poisson ratio are then obtained.

3.7.5 Elastic constants of BaF$_2$:La

The calculation of elastic constants for BaF$_2$:Lawas done in the cubic phase of the host cubic phase of BaF$_2$. The cubic phase comprises of C_{11}, C_{12} and C_{44} elastic constants. Unlike the hexagonal structure, cubic elastic constants are less tedious to calculate and vectors are written as;
\[
\begin{bmatrix}
 a_1 \\
a_2 \\
a_3
\end{bmatrix} =
\begin{bmatrix}
 0 & a & a \\
a & 0 & a \\
a & a & 0
\end{bmatrix}
\] (3.44)

where \(a\) is the lattice parameter, when a strain is applied, the primitive vectors are changed to the new vector written as

\[
\begin{bmatrix}
a_1' \\
a_2' \\
a_3'
\end{bmatrix} =
\begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix} \cdot (1 + \varepsilon)
\] (3.45)

\(\varepsilon\) = strain tensor which is linked to \(e\) = strain vector:

\[
\varepsilon =
\begin{bmatrix}
e_1 & \frac{e_6}{2} & \frac{e_5}{2} \\
\frac{e_6}{2} & e_2 & \frac{e_4}{2} \\
\frac{e_5}{2} & \frac{a}{2} & e_3
\end{bmatrix}
\] (3.46)

\(e = (0, 0, 0, \delta, \delta, \delta)\) (strain) is applied to the crystal (Ravindran et al., 2001). Then \(C_{44}\) can be calculated from the equation;

\[
\frac{\Delta E}{V} = \frac{3}{2} C_{44} \delta^2
\] (3.47)

Shear modulus \(C'\) is obtained from the volume-conserving strain \(e = (\delta, \delta, (1 + \delta)^2 - 1, 0, 0, 0)\) using the relation:

\[
\frac{\Delta E}{V} = 6C' \delta^2 + O(\delta^3)
\] (3.48)
\[C' = \frac{1}{2}(c_{11} - c_{12}) \]

(3.49)

Lastly, bulk modulus B can be calculated from the strain under hydrostatic pressure \(e = (\delta, \delta, \delta, 0, 0, 0) \), (Wang & Ye, 2003)

\[
\frac{\Delta E}{V} = \frac{9}{2}B\delta^2
\]

(3.50)

By substituting the values appropriately, the three elastic constants can be determined from these relations and this was done using the thermo_pw code and the results were compared to those of BaF\(_2\).

3.8 Defect Formation Energy

The defect formation energies of isolated La impurities in BaF\(_2\) were studied. The single defects are interstitial for fluorine atoms and La substitution impurities. The complex defects are formed by a F interstitial in association with one La atom. A 24 atom supercell was built in study of defect properties. The cell contained 8 barium atoms and 16 fluorine atoms.

3.8.1 Interstitial formation energy

For interstitial formation energy calculations, the total energy of the relaxed perfect crystal \(E_{\text{perf}} \) was first calculated before introducing an interstitial. After introducing La atom together with an interstitial fluorine into the relaxed system, the crystal was again relaxed to achieve the optimized total energy of the system with an interstitial, \(E_{\text{La}} \). The calculations were carried out at ground state conditions. Interstitial formation energy equation was used to calculate the formation energy (Kuznetsov et al., 2003):

\[
E_{\text{def}} = E_{\text{La}} + E_{\text{perf}} - E_{\text{at}}^{\text{F}} - E_{\text{La}}^{\text{at}} + E_{\text{Ba}}^{\text{at}}
\]

(3.51)
where E_{F}^{at}, E_{La}^{at} and E_{Ba}^{at} are the energies for single atoms for fluorine, lanthanum and barium respectively.

The energy difference between the bulk super-cell and the relaxed super-cell containing the lanthanum defect determined the defect formation energy of the interstitial

3.8.2 Neutral charge formation energy

The neutral charge formation energy was also carried out by including a neutral charge in the calculation which hindered the inclusion of interstitial charge compensation fluorine and this translated to 24 atoms instead of 25 atoms. The defect formation energy was then obtained from the energy difference between the defected super-cell with lanthanum substitute and the relaxed pure super-cell without a defect. These results were compared to the interstitial formation energy to get the most stable system.

3.9 Optical properties

The materials constants like the dielectric constant ε_1, the conductivity σ_1, and the permeability μ_1 represent the charge of the field and the current present in matter.

Because of simple historical reasons, refractive index n and the extinction coefficient k optical constants have been associated extensively with the propagation and dissipation of electromagnetic waves in different media. Description of optical properties in different media requires the definition of complex refractive index as a new response function written in the form.

$$
\tilde{N} = n + ik = \left[\varepsilon_1 \mu_1 + i \frac{4\pi\varepsilon_1\sigma_1}{\omega} \right]^\frac{1}{2} = [\tilde{\varepsilon} \tilde{\mu}]^\frac{1}{2}
$$

(3.52)
where the complex wavevector value \(q = q\hat{n} \) and \(\hat{n} = q/q \) is the unit vector along the \(q \) direction and is written

\[
\hat{q} = \frac{\omega}{c} \hat{N} = \frac{n_0}{c} + i\frac{K_0}{c} \tag{3.53}
\]

The refractive index \(n \) and the extinction coefficient \(k \) can be written in terms of conductivity \(\sigma_1 \), the permeability \(\mu_1 \), and the dielectric constant \(\varepsilon_1 \) (Gajdoš et al., 2006)

\[
\hat{n}^2 = \frac{\mu_1}{2} \left(\varepsilon_1^2 + \left(\frac{4\pi\sigma_1}{\omega} \right)^2 \right)^{\frac{1}{2}} + \varepsilon_1 \tag{3.54}
\]

\[
\hat{k}^2 = \frac{\mu_1}{2} \left(\varepsilon_1^2 + \left(\frac{4\pi\sigma_1}{\omega} \right)^2 \right)^{\frac{1}{2}} - \varepsilon_1 \tag{3.55}
\]

Equations (3.54) and (3.55) give two vital relations that contain important relation of the electromagnetic wave propagation in materials. The optical constants describe wave propagation and are incapable of describing direct current properties of materials. For \(\omega = 0 \), \(\varepsilon_1 \), \(\sigma_1 \) and \(\mu_1 \) are the only constants defined. The reflectivity of a dielectric material without losses \(k \to 0 \) the refractive and extinction coefficient \(k \) becomes:

\[
n^2 - k^2 = \varepsilon_1 \mu_1 \tag{3.56}
\]

\[
2nk = \frac{4\pi\mu_1\sigma_1}{\omega} \tag{3.57}
\]

Equation (3.57) can be written as in terms of dielectric constant, permeability and the conductivity:

\[
\hat{N}^2 = \mu_1 \left[\varepsilon_1 + i\frac{4\pi\sigma_1}{\omega} \right] = \mu_1 \varepsilon^* \approx \frac{4\pi\mu_1\sigma_1}{\omega} \tag{3.58}
\]

If \(|\varepsilon_1| \geq 1 \) then
\[|\tilde{N}| = (n^2 + k^2)^{\frac{1}{2}} \] (3.59)

3.9.1 Reflectivity

The reflectivity \(R(\omega) \) can be expressed as

\[R(\omega) = \left[\frac{1 - \tilde{N}}{1 + \tilde{N}} \right]^2 = \frac{(1 - n)^2 + k^2}{(1 + n)^2 + k^2} \] (3.60)

If \(k \to 0 \) then the reflectivity is reduced to:

\[R = \left| \frac{1 - n}{1 + n} \right|^2 \] (3.61)

The complex imaginary dielectric function \(\varepsilon_1(\omega) \) has been obtained by summing over conduction bands (Ambrosch & Sofo 2006):

\[\varepsilon^{(2)}_{\alpha\beta}(\omega) = \frac{4\pi^2 e^2}{\Omega} \lim_{q \to 0} \sum_{c,v,k} 2w_k \delta(\epsilon_{ck} - \epsilon_{vk} - \omega) \times \langle u_{ck+eaq} | u_{vk} \rangle \langle u_{ck+eaq} | u_{vk} \rangle^* \] (3.62)

Equation (3.62) indicates a transition between the occupied and the unoccupied states within the first Brillouin zone and the \(k \) vectors wave are fixed. The Kramers-Kronig relation connects between the real and the imaginary parts of an analytical dielectric function (Harrison, 1999) as:

\[\varepsilon^{(1)}_{\alpha\beta} = 1 + \frac{2}{\pi} P \int_0^\infty \frac{\varepsilon^{(2)}_{\alpha\beta}(\omega') \omega'}{\omega^2 - \omega'^2 + i\eta} d\omega' \] (3.63)

The complex dielectric constant \(\varepsilon^- \) and the complex conductivity \(\sigma^- \) can be regarded as the prime response functions to the applied electric field.
3.9.2 Absorption coefficient

The absorption coefficient corresponds to the intensity loss per unit length \(I(x) = I_o \exp(-\alpha x) \) which is given as:

\[
\alpha(\omega) = \frac{\omega}{4\pi} \varepsilon_2(\omega)
\]

(3.64)

It can be indicated from the equation that there is a strong relationship between \(\alpha(\omega) \) and \(\varepsilon_2(\omega) \) although an exact \(\omega \) dependence will cause an increase in high-energy absorption. The frequency dependent dielectric matrix was calculated using quantum espresso optical programs. Imaginary dielectric and real dielectric values of BaF₂:La were obtained. The reflection, refractive indexes were then calculated using real and imaginary parts of dielectric function.
CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Results

The tysonite phase structure is presented in figure 4.1. In a DFT calculation, computations were done at 0 K in which our calculations have been carried out.

Figure 4. 1: The LaF₃ tysonite structure

The tysonite structure of LaF₃ belongs to the space group $P-3c1$ (No. 165). There are six formula in the unit cell and the initial atomic Wychoff positions are La (0.6597, 0,
1/4), F 1 (0.3656, 0.0535, 0.0813), F 2 (1/3, 2/3, 0.1865) and F 3 (0, 0, 1/4) respectively (Belzner et al., 1994)

Table 4.1: Lattice constants, volume per atom and bulk modulus for LaF₃

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>c(Å)</th>
<th>c/a</th>
<th>(V_0(Å^3))</th>
<th>(B_0(\text{GPa}))</th>
<th>(B’_0)</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESENT WORK</td>
<td>7.245</td>
<td>7.388</td>
<td>1.02</td>
<td>327.14</td>
<td>114.44</td>
<td>4.25</td>
<td>(Elicah et al., 2018)</td>
</tr>
<tr>
<td>CASTEP(LDA)</td>
<td>7.128</td>
<td>7.329</td>
<td>1.028</td>
<td>322.48</td>
<td>114.26</td>
<td>3.96</td>
<td>(Zhenlong et al., 2014)</td>
</tr>
<tr>
<td>WIEN2K(GGA)</td>
<td>7.260</td>
<td>7.427</td>
<td>1.023</td>
<td>339.01</td>
<td>97.27</td>
<td>-</td>
<td>(Modak et al., 2009)</td>
</tr>
<tr>
<td>EXPT</td>
<td>7.191</td>
<td>7.357</td>
<td>1.023</td>
<td>329.46</td>
<td>104.9</td>
<td>4.5(6)</td>
<td>(Crichton et al., 2010)</td>
</tr>
</tbody>
</table>

From the results presented, a statistical-correlation exists between the calculated and experimentally obtained values; this is evident from smallest deviations seen in lattice parameters. The results obtained in this study compare favorably well with other calculated values. From table 4.1, it can be deduced that the deviations in optimized lattice parameter values are less than 1% from the experimental values obtained.

4.1.1 Phase Stability of LaF₃

LaF₃ exists in three phases namely: tysonite, orthorhombic and tetragonal. The phase stabilities of these phases of LaF₃ were obtained; the total energies were calculated at fixed volumes followed by energy-volume relationships analysis. The energy against volume for these phases of LaF₃ were as illustrated in figure 4.2. The tysonite phase structure had the minimum energy and therefore it was the most stable at ground state compared to the orthorhombic and tetragonal phases.
Figure 4.2: Phase stability for LaF$_3$ phases

4.1.2 Structural properties of BaF$_2$ and BaF$_2$: La

A supercell of 2*2*2 was constructed from a unit cell of BaF$_2$ which translated into 24 atoms. Barium atom was then substituted with La. But since Lanthanum has an extra electron, a charge compensation was done by incorporating interstitial fluorine.
Figure 4.3: A supercell of BaF$_2$.

Figure 4.4: Supercell structure of BaF$_2$: La.
4.1.3 Electronic properties of LaF_3

The band structure and the density of states (DOS) play an important role in analyzing the electronic properties of materials. The band structure of LaF_3 is shown in figure 4.5.

![LaF3 band structure](image)

Figure 4.5: LaF_3 band structure

From the calculations it is shown that LaF_3 is a wide-band-gap insulator with a direct band gap of 7.78 eV. Compared with the value of 6 eV calculated by Modak (Modak et al., 2009) through Wein2K code, these results are closer to the experimental data of 9.7 eV. It is well known that the DFT usually underestimates the band gap, thus
these value should be reasonable. It is well known that the DFT usually underestimates the band gap, this is because of the existence of a derivative discontinuity of energy with respect to number of electrons (Perdew et al., 1996).

The density of states for LaF_3 are as illustrated in figure 4.6

![Figure 4.6: Density of states of LaF$_3$](image)

The density of states illustrates that the conduction band is majorly occupied by the La-5p states and the La-5d states. The valence band is dominated by F-2p state majorly.
Table 4.2: Band gap values for tysonite LaF₃

<table>
<thead>
<tr>
<th></th>
<th>CASTEP (LDA)</th>
<th>WEIN2K</th>
<th>EXPT</th>
<th>GGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct band gap (eV)</td>
<td>7.76</td>
<td>6.0</td>
<td>9.7</td>
<td>7.78</td>
</tr>
<tr>
<td>Ref</td>
<td>(Zhenlong et al., 2014)</td>
<td>(Modak et al., 2009)</td>
<td>(Belzner et al., 1999)</td>
<td>(Elicah et al., 2018)</td>
</tr>
</tbody>
</table>

The band structure and the density of states obtained are as presented in Figure 4.5 and Figure 4.6 respectively. The gap above the highest occupied energy level and the lowest unoccupied energy level is equivalent to the difference in the valence band maximum and conduction band minimum. The band structure indicates that the tysonite phase of LaF₃ is a strong insulator having a direct band gap of 7.78 eV which is comparable to experimental value of 9.0 eV. The band gap values are tabulated in Table 4.2 for further comparisons. The results obtained can be compared well with other theoretical results. The band gap obtained in this work is underestimated as compared to the experiment value as expected from the pseudopotentials used.

4.1.4 Electronic properties of BaF₂ and BaF₂:La

The band structure, band gap and density of states of BaF₂ are presented in Figures 4.7 and 4.8 respectively.
The valence and conduction band structure of the cubic BaF$_2$ is displayed in figure 4.7 where an ionic and cationic states are expected to constitute the top of the valence band and the bottom of the conduction band respectively. Accordingly, the F 2p states form the upper valence band followed by a band due to the Ba 5p states at about 7.38 eV below the top of the valence band. The results yielded location of the outermost core band (due to the Ba 5p states) in excellent agreement with the reflection and photoelectron experiments which report the band gap to be at about 7.8 eV below the valence band (Itoh & Itoh, 1992). It is to be noted here that calculations based on DFT provide a very good description of electronic states in the valence band, though they are not as reliable in describing the conduction states.

Figure 4.7: Band structure of BaF$_2$

![Band structure of BaF$_2$](image)
The calculated density of states (DOS) of the cubic BaF$_2$ using the GGA method is as presented in Figure 4.8. From the figure it is shown that the upper valence bands (VB) mainly consist of F p-spin, whereas the conduction band (CB) bottom consists essentially of Ba p-spin. The orbital contribution from F atoms is small in this energy range. This results fits to the previous theoretical study obtained earlier (Catti et al., 1991).
Band structure and density of states for BaF$_2$:La are as shown in figures 4.9 and 4.10.

Figure 4.9: Band structure of BaF$_2$: La

The valence band of BaF$_2$ is constituted by states of both Ba and F, while the cation states dominate conduction band respectively. The main effect of introduction of the La$^{3+}$ results into the appearance of the upper electronic band connected to the interstitial F$_i$ 2p. The broadened valence band is as a result of the introduction of La-5p in BaF$_2$.
Figure 4. 10: Density of states of BaF$_2$: La

It is also noted that in the considered energy range, the valence band of this material is formed by F-p state, while the conduction band is dominated by Ba-p and La-p states. The F$_{1}$ 2p states appear in the forbidden energy region of the host, at the maximum of valence band for BaF$_2$:La.

Values of the band gap for BaF$_2$ and BaF$_2$:La are shown in Table 4.3. A comparison with values from other studies has been made.
Table 4.3: Band gap values for BaF$_2$ and BaF$_2$: La

<table>
<thead>
<tr>
<th></th>
<th>BaF$_2$ (eV)</th>
<th>BaF$_2$:La (eV)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGA</td>
<td>7.38</td>
<td>4.80</td>
<td>This work</td>
</tr>
<tr>
<td>HF</td>
<td>7.50</td>
<td>4.68</td>
<td>(Kuznetsov et al., 2003)</td>
</tr>
<tr>
<td>EXPT</td>
<td>11.0</td>
<td>8.36</td>
<td>(Catlow, 1983)</td>
</tr>
</tbody>
</table>

From the results obtained, it is noted that the reduction in the band structure is associated to the substitution defect of La and the charge-compensating impurity F$_i$. A decrease of the band gap from 7.38eV to 4.8eV and an increase in valance band energy from 1.96eV to 2.54eV relative to its value in BaF$_2$ which is due to the Coulombic interaction between the [La$^{3+}$F$_i$] dipole and its surrounding. The bands were broadened due to the hybridization of the 5d orbital of La with the conduction band minimum and valance band maximum causing additional energy states to form in the BaF$_2$ band gap.

4.1.5 Mechanical Properties of LaF$_3$, BaF$_2$ and BaF$_2$: La

The elastic constants of solids are important parameters that can provide useful aspects of the mechanical and dynamic characteristics for instance stability and stiffness of a material. The calculated elastic constants for LaF$_3$, BaF$_2$ and BaF$_2$:La at ground state are displayed in table 4.4 and 4.5 respectively.
Table 4.4 The elastic constants (GPa) and Debye temperature Θ_D for

tysoniteLaF$_3$ at ground state

<table>
<thead>
<tr>
<th></th>
<th>C_{11}</th>
<th>C_{12}</th>
<th>C_{13}</th>
<th>C_{14}</th>
<th>C_{33}</th>
<th>C_{44}</th>
<th>Θ_D</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGA</td>
<td>170.10</td>
<td>76.26</td>
<td>58.69</td>
<td>-1.66</td>
<td>208.07</td>
<td>33.90</td>
<td>383.74</td>
<td>Present</td>
</tr>
<tr>
<td>CASTEP</td>
<td>194.33</td>
<td>90.54</td>
<td>60.2</td>
<td>-1.64</td>
<td>240.27</td>
<td>34.28</td>
<td>399.14</td>
<td>(Zhenlong et al., 2014)</td>
</tr>
<tr>
<td>EXPT</td>
<td>180</td>
<td>88</td>
<td>59</td>
<td>-</td>
<td>222</td>
<td>34</td>
<td>382</td>
<td>(Laiho et al., 1983)</td>
</tr>
</tbody>
</table>

The elastic constants obtained are comparable to experimental values. From the results the tysonite crystal is mechanically stable.

Table 4.5 The Voight-Reuss and Hill's obtained values of the bulk modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa), B/G and Poisson’s ratio (ν) for

LaF$_3$

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>G</th>
<th>B/G</th>
<th>E</th>
<th>A</th>
<th>Σ</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGA</td>
<td>89.73</td>
<td>46.87</td>
<td>1.91</td>
<td>119.70</td>
<td>0.72</td>
<td>0.276</td>
<td>This work</td>
</tr>
<tr>
<td>CASTEP</td>
<td>116.71</td>
<td>49.03</td>
<td>2.38</td>
<td>129.01</td>
<td>-</td>
<td>0.315</td>
<td>(Zhenlong et al., 2014)</td>
</tr>
</tbody>
</table>

The value of A calculated for LaF$_3$ indicates that the materials are highly anisotropic.

The values of Poisson’s ratio should be of the below 0.1 for covalent bonding and 0.25 for ionic bonding. From the values obtained, LaF$_3$ is highly ionic. The ratio between B/G known as Pugh’ ratio, where B is bulk modulus which indicates fracture resistance and G the shear modulus gives resistance to plastic deformation. The critical value of Pugh’s ratio is 1.75. Any value less than this indicates that the
material is brittle in nature (Wu et al., 2017). Our calculated values are greater than 1.75 for these material, indicating that LaF₃ is ductile in nature.

Table 4.6 Elastic constants (GPa) for BaF₂ and BaF₂:La at ground state

<table>
<thead>
<tr>
<th></th>
<th>C₁₁</th>
<th>C₁₂</th>
<th>C₄⁴</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaF₂</td>
<td>90.00</td>
<td>38.70</td>
<td>24.50</td>
<td>This work</td>
</tr>
<tr>
<td>ABINIT</td>
<td>112.40</td>
<td>64.89</td>
<td>28.76</td>
<td>(Schmalzl, 2007)</td>
</tr>
<tr>
<td>EXPT</td>
<td>98.10</td>
<td>44.81</td>
<td>25.44</td>
<td>(Ravindra et al., 2007)</td>
</tr>
<tr>
<td>BaF₂:La</td>
<td>78.50</td>
<td>31.80</td>
<td>24.50</td>
<td>This work</td>
</tr>
<tr>
<td>EXPT</td>
<td>80.80</td>
<td>40.80</td>
<td>25.44</td>
<td>(Rummutla et al., 2015)</td>
</tr>
</tbody>
</table>

The elastic constants for pure BaF₂ are reduced from $C_{11}=90.0$, $C_{12}=38.7$, to $C_{11}=78.5$, $C_{12}=31.8$, for BaF₂:La except for C_{44} which remains constant. These results indicate reductions in some constants due to enhanced ion mobility (Rummutla et al., 2015).

4.1.6 Defect formation energy of BaF₂:La

When barium atom is substituted with lanthanum atom, a doping of 4% was achieved. This is done with inclusion of charge-compensating interstitial fluorine. When BaF₂ is doped with La, the nearest –neighbor position (NN) or next nearest neighbor (NNN) of interstitial fluorine is obtained. The respective calculated energies are as represented in Tables 4.7 and 4.8.
Table 4.7: Calculated values of the for defect energy

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>E_{perf}</th>
<th>E_{La (defect)}</th>
<th>E_{Ba}</th>
<th>E_{F2}</th>
<th>E_{La}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-18823.14</td>
<td>-19456.12607</td>
<td>-1026.936</td>
<td>-658.112</td>
<td>-975.229</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.8: Defect formation energy

<table>
<thead>
<tr>
<th>E_{NN} (eV)</th>
<th>E_{NNN} (eV)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>QE</td>
<td>-26.48</td>
<td>-27.58</td>
</tr>
<tr>
<td>HF</td>
<td>-24.76</td>
<td>-25.28</td>
</tr>
</tbody>
</table>

From the defect formation energy obtained, for nearest neighbor (NN) -26.48 eV compared to nearest next neighbor (NNN) -27.58 eV. From the tabulated results, the interstitial fluorine in the nearest next neighbor gives a more stable structure than when it is in the nearest neighbor position.

4.1.7 Neutral Charge formation energy of BaF₂: La

This process occurs when one atom of barium is substituted with lanthanum without being accompanied by incorporating of charge-compensating interstitial fluorine, but
a neutral charge is included in the calculations. The results obtained are as represented in table 4.9.

Table 4.9: Calculated neutral charge formation energy

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 atoms without</td>
<td>-26.34eV</td>
</tr>
<tr>
<td>charge</td>
<td></td>
</tr>
<tr>
<td>24 atoms with</td>
<td>-25.89eV</td>
</tr>
<tr>
<td>charge</td>
<td></td>
</tr>
</tbody>
</table>

From the results obtained the supercell with the charge-compensating fluorine has higher energy compared to the supercell without the charge compensating fluorine. Therefore the supercell without a charge-compensating is more stable than the one with the charge –compensating fluorine. Because Ba is much smaller than a La atom, it is easier to transport it with less disruption to the structure of the host material, LaF$_3$. Therefore, it would require less energy to form Ba defects in LaF$_3$ because with smaller size Ba forms an interstitial easily in LaF$_3$.

4.1.8 Optical properties of BaF$_2$and BaF$_2$: La

Optical properties of BaF$_2$ and BaF$_2$: La materials were studied with respect to the complex dielectric function. The optical spectrum for BaF$_2$ and BaF$_2$:La are as shown in figure 4.11 and 4.12 respectively.
Figure 4.11: Optical spectrum of BaF$_2$
From the figures, it is noted that the absorption spectrum of BaF$_2$:La starts at a higher energy compared to that of pure BaF$_2$. This is attributed to the presence of La atom.

The real and imaginary parts of the refractive indices of BaF$_2$ and BaF$_2$:La are presented in figures 4.13 and 4.14 respectively.
Figure 4.13: Refractive index of BaF$_2$
Figure 4.14: Refractive index of BaF$_2$:La

From the figures, the refractive index of BaF$_2$:La is increased compared to that of pure BaF$_2$ at 1.58.

Table 4.10: Refractive index of BaF$_2$ and BaF$_2$:La

<table>
<thead>
<tr>
<th></th>
<th>BaF$_2$</th>
<th>BaF$_2$:La</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>QE(GGA)</td>
<td>1.52</td>
<td>1.58</td>
<td>This work</td>
</tr>
<tr>
<td>GGA+U</td>
<td>1.45</td>
<td>-</td>
<td>(Fooladchang et al., 2013)</td>
</tr>
<tr>
<td>EXPT</td>
<td>1.46</td>
<td>1.55</td>
<td>(Weber, 2002)</td>
</tr>
</tbody>
</table>
The refractive index of BaF$_2$ is obtained as 1.52 compared to experimental value of 1.45. The refractive index of BaF$_2$:La is 1.58, this is an increase compared to that of BaF$_2$. BaF$_2$:La is therefore useful applications such as lens in lithography.
CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Structural, electronic, mechanical and optical properties were calculated. These were based on the density functional theory which restricts computations to the ground state conditions only. Results of first principles calculations of the electronic, structural, mechanical and optical properties of LaF$_3$ and BaF$_2$ presented in this study were compared with experimental results achieved so far. The calculated results for all the materials in this study are in agreement with experimental findings and they showed consistency with other theoretical predictions.

The electronic and structural properties, which were determined from calculations of lattice parameters, bulk moduli, band gap values and density of states were obtained at the ground state. Lattice constants results for LaF$_3$ are in agreement with experimental results obtained. The Birch Murnaghan third order equation of state gives bulk modulus of 114.44 GPa, which corresponds fairly well with experimental value of 110.4 GPa. The LaF$_3$ structure is wide band gap of 7.78 eV (direct) while experimental value is 9.1 eV. An indirect band gap of 7.38 eV for BaF$_2$ was achieved in this calculation compared to experimental value of 10 eV. The materials studied displayed the properties of insulators from their band structures, and it has been established that semiconductors and insulators tend to have single exchange-correlation potential which is not sufficient enough for such systems where the exchange-correlation potential is likely to be discontinuous across the gap hence the underestimation (Szabo & Ostlund, 1996).
When La was doped in BaF$_2$, it was noted that there was a reduced band gap. This was due to the introduction of new energy bands in the band structure which was associated with the substitution defect of La and the charge-compensating impurity F$_i$. There was an increase in valance band energy relative to its value in the pure BaF$_2$ which was due to the Coulombic interaction between the [La$^{3+}$ F$_i^-$] dipole and its surrounding. The elastic constants for pure BaF$_2$ were obtained as C_{11}=90.0, C_{12}=38.7, C_{14}=24.5 compared to the doped BaF$_2$: La C_{11} =78.5, C_{12}=31.8, C_{14}=24.5. There is a reduction of C_{11} and C_{12} which is due to the inclusion of the compensating fluorine charge while there is minimal change in C_{44}. These results are an indicator that the changes in the elastic constants were due to enhanced ion mobility (Rummutla, 2015).

Doping La in BaF$_2$ translated to 4% concentration since one La was substituted with one Ba atom. From the defect formation energy obtained, for (NN) -26.48eV compared to (NNN) – 27.58eV. It is observed that the (NNN) is most favorable and stable for dopant La in BaF$_2$ lattice. Compared to neutral charge formation energy where interstitial fluorine is not included, the formation energy is less than that of included fluorine and thus it is concluded that the neutral charge supercell is more favorable and stable compared to the interstitial supercell.

La affects the electronic properties and hence optical properties of pure BaF$_2$. As indicated in this study, the absorption spectrum is affected by the presence of the dopant states, the transition from the gap states to conduction band which gives rise to a new absorption spectrum.

5.2 Recommendations

DFT calculations underestimate some electronic properties such as the band gaps. To overcome this challenge of underestimation of band gaps, the GGA+U
pseudopotentials should be used, although they are computationally expensive. However, other approaches may be used to widen the band gaps. Some of these approaches involve the application of the self interacting correction method. This approach involves the removal of the Hatree term that enhances the unphysical self interaction by an orbital-by-orbital correction to the exchange-correlation potential. Calculations that include GW and hybrid functional give better results especially the band gaps. With proper and successful access to high performance computing resources these studies can effectively be carried out at minimal costs.

From the results obtained, BaF₂:La is recommended for use in optoelectronic devices such as solar cells. This is due to the improvement of the optical properties by the dopant. The optical properties results obtained are based on independent particle picture level which may not be comparable to experimental optical spectra directly. La atom is bigger than Ba atom. It is therefore recommended that LaF₃ can be doped with barium atom for future study.

5.3 Suggestions for further studies

1) Further study be done on the optical properties of BaF₂:La by inclusion of excitonic effects through the Bethe-Salpeter equations (Sauli, 2011).

2) La atom is bigger compared to Ba atom, there LaF₃ can be doped with barium atom and the results compared to this work
REFERENCES

Burke K., (2007). The ABC of DFT Department of Chemistry, University of California, Irvine, CA 92697.

Manjula, M., Sundareswari M., Viswanathan, E., (2016). Enhancement of ductility in cubic Rh3AxTi1x(A = V, Nb, Ta)(x = 0, 0.125, 0.25, 0.75, 0.875, 1) aerospace materials–First principles DFT study. Mater. Chem. Phys. 181, 90–98. https://doi.org/10.1016/j.matchemphys.2016.06.037

APPENDICES

APPENDIX I: Input file for pwscf code tysonite LaF₃ structure

&CONTROL
 calculation='scf'
 restart_mode='from_scratch',
 pseudo_dir = "/",
 outdir='./tmp',
 prefix='LaF₃'
/
&SYSTEM
 ibrav = 4,
 celldm(1) =13.69,
 celldm(2)=1.02,
 nat= 24, ntyp= 2,
 ecutwfc = 60,ecutrho = 720.0,
 occupations='smearing',
 smearing='marzari-vanderbilt', degauss=0.0
/
&ELECTRONS
 mixing_beta = 0.7
/
 ATOMIC_SPECIES
 La 138.9054La.pbe-nsp-van.UPF
 F 19.998403 F.pbe-nsp-van.UPF
 ATOMIC_POSITIONS (crystal)
 La 0.9517460000000 0.6337630000000 0.7500000000000
 La 0.4517460000000 0.8662370000000 0.2500000000000
 La 0.5482540000000 0.1337630000000 0.7500000000000
 La 0.0482540000000 0.3662370000000 0.2500000000000
 La 0.6608985110000 0.0000000000000 0.2500000000000
 La 0.3391014890000 0.3391014890000 0.7500000000000
 F 0.3621140000000 0.1629430000000 0.4364880000000
 F 0.8621140000000 0.3370570000000 0.5635120000000
 F 0.1378860000000 0.6629430000000 0.0635120000000
 F 0.6378860000000 0.8370570000000 0.9364880000000
 F 0.6095110000000 0.5289710000000 0.2500000000000
 F 0.1095110000000 0.9710290000000 0.7500000000000
 F 0.8904890000000 0.0289710000000 0.2500000000000
 F 0.3904890000000 0.4710290000000 0.7500000000000
 F 0.3621140000000 0.1629430000000 0.4364880000000
 F 0.8621140000000 0.3370570000000 0.5635120000000
 K_POINTS automatic
 9 7 5 1 1 1
APPENDIX II: Input file for pwscf code Supercell BaF$_2$ structure

&CONTROL
 calculation='scf'
 restart_mode='from_scratch',
 pseudo_dir='.',
 outdir='./',
 prefix='LaF3'
/
&S-system
 ibrav = 2,
 celldm(1) = 16.69,
 nat= 24, ntyp = 2,
 ecutwfc = 60, ecutrho = 720.0,
 !occupations='smearing', smearing='marzari-vanderbilt', de gauss=0.0
/
&ELECTRONS
 mixing_beta = 0.7
/
 ATOMIC_SPECIES
 Ba 137.34 Ba.pbe-nsp-van.UPF
 F 19.998403 F.pbe-nsp-van.UPF

 ATOMIC_POSITIONS (crystal)
 La 0.95174600000000 0.63376300000000 0.75000000000000 0.75000000000000
 La 0.45174600000000 0.86623700000000 0.25000000000000 0.25000000000000
 La 0.54825400000000 0.13376300000000 0.75000000000000 0.75000000000000
 La 0.04825400000000 0.36623700000000 0.25000000000000 0.25000000000000
 La 0.6608985110000 0.00000000000000 0.25000000000000 0.25000000000000
 La 0.3391014890000 0.3391014890000 0.75000000000000 0.75000000000000
 F 0.36211400000000 0.16294300000000 0.43648800000000 0.43648800000000
 F 0.86211400000000 0.33705700000000 0.56351200000000 0.56351200000000
 F 0.13788600000000 0.66294300000000 0.06351200000000 0.06351200000000
 F 0.63788600000000 0.83705700000000 0.93648800000000 0.93648800000000
 F 0.60951100000000 0.52897100000000 0.25000000000000 0.25000000000000
 F 0.10951100000000 0.97102900000000 0.75000000000000 0.75000000000000
 F 0.89048900000000 0.02897100000000 0.25000000000000 0.25000000000000
 F 0.39048900000000 0.47102900000000 0.75000000000000 0.75000000000000
 F 0.36211400000000 0.16294300000000 0.63512000000000 0.63512000000000
 F 0.86211400000000 0.33705700000000 0.93648800000000 0.93648800000000
 F 0.13788600000000 0.66294300000000 0.25000000000000 0.25000000000000
 F 0.63788600000000 0.83705700000000 0.56351200000000 0.56351200000000
 F 0.94637209600000 0.31331301620000 0.08175839200000 0.08175839200000

K_POINTS automatic
 9 9 9 1 1 1
APPENDIX III: Input file for pwscf code Supercell BaF$_2$:La

&CONTROL
Calculation='scf'
restart_mode='from_scratch',
pseudo_dir = "./",
outdir='./tmp',
prefix='LaF3'
/
&SYSTEM
ibrav = 2,
celldm(1) =16.69,
nat= 25, ntyp= 3,
ecutwfc = 60,ecutrho = 720.0,
'occupations='smearing',
smearing='marzari-vanderbilt',
degauss=0.0
/
&ELECTRONS
mixing_beta = 0.7
/

ATOMIC_SPECIES
Ba 138.9054 Ba.pbe-nsp-van.UPF
La 138.9054 La.pbe-nsp-van.UPF
F 19.998403 F.pbe-nsp-van.UPF

ATOMIC_POSITIONS (crystal)
Ba 0.951746000000000 0.633763000000000 0.750000000000000 0.750000000000000
Ba 0.451746000000000 0.866237000000000 0.250000000000000 0.250000000000000
Ba 0.548254000000000 0.133763000000000 0.750000000000000 0.750000000000000
La 0.048254000000000 0.366237000000000 0.250000000000000 0.250000000000000
Ba 0.6608985110000 0.000000000000000 0.250000000000000 0.250000000000000
Ba 0.3391014890000 0.3391014890000 0.750000000000000 0.750000000000000
F 0.362114000000000 0.162943000000000 0.436488000000000 0.436488000000000
F 0.862114000000000 0.337057000000000 0.563512000000000 0.563512000000000
F 0.137886000000000 0.662943000000000 0.063512000000000 0.063512000000000
F 0.637886000000000 0.837057000000000 0.936488000000000 0.936488000000000
F 0.609511000000000 0.528971000000000 0.250000000000000 0.250000000000000
F 0.109511000000000 0.971029000000000 0.750000000000000 0.750000000000000
F 0.890489000000000 0.028971000000000 0.250000000000000 0.250000000000000
F 0.390489000000000 0.471029000000000 0.750000000000000 0.750000000000000
F 0.362114000000000 0.162943000000000 0.337057000000000 0.337057000000000
F 0.862114000000000 0.337057000000000 0.563512000000000 0.563512000000000
F 0.137886000000000 0.662943000000000 0.063512000000000 0.063512000000000
F 0.637886000000000 0.837057000000000 0.936488000000000 0.936488000000000
F 0.946372096000000 0.313313016200000 0.081758392000000 0.081758392000000
F 0.366758066000000 0.053627904000000 0.081758392000000 0.081758392000000

K_POINTS automatic
9 9 9 1 1 1
APPENDIX IV: Input file for pwscf code Supercell BaF$_2$:La with neutral charge

>>&CONTROL
Calculation='scf'
restart_mode='from_scratch',
pseudo_dir = "/",
outdir='./tmp',
prefix='LaF$_3'$
/
>>&SYSTEM
ibrav = 2,
celldm(1) =16.69,
nat= 24, ntyp= 3,
ecutwfc = 60,ecutrho = 720.0,
occupations='smearing',
charge tot= +1
 smearing='marzari-vanderbilt',
degauss=0.0
/
>>&ELECTRONS
mixing_beta = 0.7
/
 ATOMIC_SPECIES
Ba 138.9054 Ba.pbe-nsp-van.UPF
La 138.9054 La.pbe-nsp-van.UPF
F 19.998403 F.pbe-nsp-van.UPF
 ATOMIC_POSITIONS (crystal)
Ba 0.95174600000000 0.63376300000000 0.75000000000000
Ba 0.45174600000000 0.86623700000000 0.25000000000000
Ba 0.54825400000000 0.13376300000000 0.75000000000000
La 0.04825400000000 0.36623700000000 0.25000000000000
Ba 0.6608985110000 0.00000000000000 0.25000000000000
Ba 0.3391014890000 0.3391014890000 0.75000000000000
F 0.36211400000000 0.16294300000000 0.43648800000000
F 0.86211400000000 0.33705700000000 0.56351200000000
F 0.13788600000000 0.66294300000000 0.93648800000000
F 0.63788600000000 0.83705700000000 0.56351200000000
F 0.60951100000000 0.52897100000000 0.25000000000000
F 0.36211400000000 0.16294300000000 0.43648800000000
F 0.86211400000000 0.33705700000000 0.56351200000000
F 0.13788600000000 0.66294300000000 0.93648800000000
F 0.63788600000000 0.83705700000000 0.56351200000000
F 0.94637209600000 0.3133130162000 0.0817583920000
F 0.3667580660000 0.05362790400000 0.0817583920000
K_POINTS automatic
 9 9 9 1 1 1
APPENDIX V: Publications
