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Abstract
The aim of this study is to investigate the effect of stress modulators on vegetative growth, antioxidants, and nutrient 
content of Thymus vulgaris L. under water deficit stress conditions. A factorial experiment was performed in the form of 
a randomized complete block design with 10 treatments and 3 replications in the 2019–2020 growing season. The factors 
were stress modulators at 5 levels (ZN: zinc nano-fertilizer, AA: amino acid, SW: seaweed, HA: humic acid and C: control) 
and irrigation regime at 2 levels [FIrr: full irrigation (100% field capacity) and DIrr: deficit irrigation (50% field capacity)]. 
The highest plant height, number of branches, and total dry weight of the garden thyme plant were observed in the foliar 
application of HA and SW under full irrigation conditions. Relative water content, chlorophyll a and b, and uptake of nutri-
ents (N, P, and K) were reduced under water deficit stress, but the foliar application of stress modulators increased relative 
water content, chlorophyll content, and nutrient uptake of the garden thyme plant significantly compared with control. The 
water deficit increased proline content, total flavonoid, and phenol content in the garden thyme plant. So, the highest total 
flavonoid and phenol content was obtained from plants treated with HA, whereas proline content was higher in the control 
plants. Soluble sugars and essential oil increased significantly under water deficit stress conditions. The foliar application 
of HA compared to the control plant increased soluble sugars and essential oil in garden thymes. The activities of catalase, 
superoxide dismutase, and ascorbate peroxidase enzymes were improved in stress modulator treatments such as HA and 
SW compared to control plants under water deficit stress conditions. The plants of garden thymes showed a good response 
to stress modulator treatments under water stress conditions, and HA and SW treatments were found to be more effective.
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Introduction

Thyme species are herbaceous perennials and small shrubs 
of the Lamiaceae (Labiatae) family that are commercially 
grown on a large scale in many countries (Aebisher et al. 
2021). Garden thyme (T. vulgaris L.) is an aromatic and 

medicinal herb native to the Western Mediterranean region's 
northern reaches (Aebisher et al. 2021). It is utilized as a 
medicinal herb because of its inflorescence and essential oil. 
Also, its infusions and decoctions are used as carminatives, 
digestives, antispasmodics, anti-inflammatory, and expecto-
rants (Bistgani et al. 2019). Monoterpenes, sesquiterpenes, 
phenolic compounds, and flavonoids are found in T. vulgaris 
essential oil and extracts. Among these, thymol and car-
vacrol are the main components of essential oils (Bistgani 
et al. 2019).

One of the main effects of climate change is that 
environmental abiotic stresses such as water shortage 
stress and enhanced temperature are likely to increase 
in frequency and severity in many ecosystems as caused 
(Arpanahi et al. 2020; Nyawade et al. 2019). Water deficit 
stress is one of the main sources of limiting agricultural 
crop output in the world's arid and semiarid regions (Gitari 
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et al. 2018; Amirnia et al. 2019). Water shortage stress 
causes a variety of physiological and metabolic responses, 
including reductions in plant growth, dry matter accumu-
lation, stomatal conductance, gas exchange, chlorophyll 
content, leaf water potential, growth rate, and photosyn-
thesis (Amirnia et al. 2019; Behdad et al. 2021; Raza et al. 
2021; Seleiman et al. 2021). Several studies have reported 
the increased accumulation of reactive oxygen species 
(ROS) under drought stress (Babaei et al. 2021; Ngugi 
et al. 2021). Plants reduce the produced ROS via enzy-
matic and non-enzymatic antioxidant mechanisms (Babaei 
et al. 2021). ROS accumulation in cells impairs membrane 
lipids, proteins, and nucleic acids (Asghari et al. 2020) 
forcing them to employ enzymatic and non-enzymatic 
antioxidant mechanisms to cope with ROS-induced oxi-
dative stress (Babaei et al. 2021).

One of the most effective practices in sustainable farm-
ing is the application of biological and organic fertilizers 
(Faridvand et al. 2021). Humic acid due to pseudo-hor-
monal compounds has favorable impacts on plant growth 
and development (Noroozisharaf et al. 2018). According to 
Aalipour et al. (2019), humic acid can significantly impact 
medicinal plants growth components such as cell membrane 
permeability, metabolic processes, cell respiration, photo-
synthetic efficiency, enzyme activation and cell elongation. 
Another potential advantage for humic acids is water deficit 
stress decline, as plants respond to humic matter by adjusting 
osmotic pressure via preserving water uptake and cellular 
swelling, thereby reducing the effects of water deficit stress 
(Khorasaninejad et al. 2018; Maitra et al. 2020). Seaweed 
extract used for various plants is essential because it contains 
a high amount of organic matter, vitamins, microelements, 
fatty acids as well as being rich in plant growth regulators 
such as auxins, gibberellins and cytokinin (Shafie et al. 
2021). Seaweed has favorable impacts, in terms of increas-
ing plant growth and development, as well as improving 
tolerance to environmental stress and enhancing antioxidant 
traits in plants (Mansori et al. 2016). Amino acids utilized 
in crops are achieved via enzymatic hydrolysis (Radkowski 
et al. 2021). Free amino acid content with a small molec-
ular weight is extremely important since they are rapidly 
absorbed by plants (Shafie et al. 2021). They function as an 
organic carrier-a chelator, allowing for rapid and highly effi-
cient nutrient delivery to plants (Shafie et al. 2021). Amino 
acids form very tiny, electrically neutral molecules with 
nutrients, which improves the uptake and transport of nutri-
ent content inside plants under water deficit stress (Teix-
eira et al. 2019). Zinc is one of the most essential immobile 
micronutrients in plants, which has an important role in 
growth and development, tryptophan synthesis, carbohy-
drate metabolism, photosynthetic pigments and enzymatic 
properties (Heydarnejadiyan et al. 2020). Zinc nanoparti-
cles by foliar application can be rapidly absorbed from the 

cytoplasmic membrane, decreasing zinc shortages in the soil 
and improving photosynthesis and plant growth and devel-
opment under water deficit stress (Rossi et al. 2019).

According to our evaluation of the research, there is no 
information on the effects of stress modifiers such as zinc, 
amino acid, seaweed and humic acid on T. vulgaris under 
water deficit stress. In this regard, this study aims to evalu-
ate the effects of stress modifiers such as zinc, amino acid, 
seaweed and humic acid on the growth, essential oil produc-
tion and physiological responses of T. vulgaris under water 
deficit stress. The findings of this research can be used in 
the development of management strategies to enhance the 
widespread cultivation of T. vulgaris.

Materials and Methods

Experimental Design

The experiment was carried out at the research farm of the 
Medicinal Plants and Drugs Research Institute of the Urmia 
University of West Azerbaijan, Iran (45°10' E, 37°44' N, and 
1338 m. above sea level). The experiment was performed 
in a factorial form based on a randomized complete block 
design with five stress modulators treatment levels (ZN: zinc 
nano-fertilizer, AA: amino acid, SW: seaweed, HA: humic 
acid and C: control) and irrigation regime at two levels [FIrr: 
full irrigation (100% field capacity) and DIrr: deficit irri-
gation (50% field capacity)] in three replicates during the 
2019–2020 growing season.

Plant Material

The seeds of T. vulgaris L. needed for this experiment were 
supplied by the Pakan Bazr Seed Company. The seeds were 
initially planted into seedling trays containing a mixture of 
soil: perlite (2:1, v: v) in January 2019. After about three 
months, the seedlings were transferred to the experimental 
site on the farm. During the growing season, Time domain 
reflectometry was used to measure soil moisture content 
(θv) at depths of 0–30 cm (Kamali and Mahdian 2009). The 
information on the temperature and rainfall of the research 
site is provided in Fig. 1.

The foliar spray treatments included a foliar application 
of zinc nano-fertilizer (2 g l−1), amino acid (2 ml l−1), sea-
weed (2 ml l−1) and humic acid (2 g l−1) along with the 
control. Control treatment plants were also sprayed with 
water. The commercial seaweed extract of Ascophyllum 
Nodosum Simplex was prepared by Acadian AgriTech Co, 
Canada. The commercial product of amino acids Tecamin 
Max was also supplied by Agri Tecno Co, Spain. Humic 
acid was prepared from the Kimia Pars Shayankar Com-
pany, Tehran, Iran. The zinc nano-fertilizer was purchased 
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from Biotechnology Company, Tehran, Iran. The results of 
soil analysis are presented in Table 1. Each plot was 3 × 4 m 
in size. The plant spacing between rows was 50 cm, while 
the interplant spacing was 30 cm. Foliar application was 
performed in the vegetative stage of garden thyme, simul-
taneously with  water deficit stress in three stages with an 
interval of 10 days. Weeds were controlled by hand when 
needed.

Measurements

Growth Parameters

The measured growth parameters were plant height, number 
of branches per plant, and herbage dry weight per plant at 
the full flowering stage. The plant samples were oven-dried 
at 39 °C for 48 h to lose their moisture completely. After 
they dried, they were weighed on a scale.

Relative Water Content (RWC)

The relative water content of the leaf was determined 
according to the method described by Xu and Leskovar 
(2015) (Eq. 1).

(1)%RWC =
[

(fresh weight− dryweight)∕ (turgid weight− dryweight)
]

× 100

Chlorophyll a and b Content (Chl a and b)

The content of chlorophyll a and b were determined 
using a spectrophotometer at wavelengths of 646.8 and 
663.2 nm, respectively (Lichtenthaler and Wellburn 1983).

Total Phenol (TPC) and Flavonoid Content (TFC)

A methanolic extract was first provided from the samples 
to perform antioxidant experiments. Then, the total fla-
vonoid and phenol content of the extracts was measured 
by the methods of Marinova et al. (2005) and Sakanaka 
et al. (2005).

Proline Content

Proline content was determined by the protocol of ninhy-
drin reagent. The absorption of the samples was measured 
at 515 nm with a spectrophotometer (Paquin and Lechas-
seur 1979).

Fig. 1   Total rainfall and average monthly air temperature for the 2019–2020 growing seasons

Table 1   Some properties of soil in the study site

EC(dS m−1) pH Texture Clay Silt Sand CaCO3

1.38 7.79 Clay loam 41% 36% 23% 15.71%

N Organic carbon Mn B Zn Fe K P
% mg kg−1

0.03 1.16 11.2 0.28 1.1 8.11 282 9.02
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Total Soluble Sugars (TSS)

Total soluble sugars of leaves were estimated by the phe-
nol–sulfuric acid method (Irigoyen et al. 1992). The absorb-
ance was determined with a spectrophotometer at 625 nm.

Macronutrients

The nitrogen (N) was determined using the Kjeldahl method 
(Schuman Stanley and Knudsen 1973), whereas potassium 
(K) was determined by a flame photometer (Edward 1999). 
The determination of phosphorus (P) was performed at 
660 nm (Kohler et al. 2007).

Enzyme Extractions and Assays

Fresh material (100 mg) was ground in 2 mL of 0.1 M 
potassium phosphate buffer (pH = 6) containing 5% polyvi-
nylpyrrolidone (PVP). Then, the extracts were centrifuged 
at 15,000 rpm at 3 °C for 20 min, and the clear supernatant 
was used to estimate the activity of the enzymes by Tejera 
et al. (2004).

Catalase Activity (CAT)

Catalase activity was assessed based on the variation in 
hydrogen peroxide (H2O2) concentration at 240 nm. The 
reaction mixture contained 1.9 mL of 50 mM potassium 
phosphate buffer (pH = 7), 10 mM H2O2, and 0.2 mL of 
enzyme extract. Enzymatic activity was read based on 
absorption variations in 60 s per mg of protein (Aebi 1984).

Superoxide Dismutase Activity (SOD)

Superoxide dismutase activity was evaluated using the 
method outlined by Beyer and Fridovich (1987) to prevent 
nitroblue tetrazolium (NBT) photochemical decrease at 
560 nm. One unit of SOD has been described as the amount 
of enzyme inhibiting a 50% decrease in NBT.

Ascorbate Peroxidase Activity (APX)

Ascorbate peroxidase activity was measured according to the 
method of Nakano and Asada (1987). The reaction mixture 
contained 1 mL 100 mM potassium phosphate buffer (pH 
7), 1 mL ascorbic acid 0.5 mM, 0.1 mL H2O2 0.1 mM, and 
100 μL enzyme extract. The absorption was read at 290 nm.

Essential Oil (EO) and Essential Oil Yield (EOY)

The essential oil was measured by water distillation using 
the Clevenger apparatus (Adams 2007). Essential oil yield 
was calculated using Eq. 2:

Data Analysis

The data generated in this study were statistically analyzed 
using the SAS 9.1 software. Means were compared by LSD 
at the p < 0.05 level, and graphs were drawn in Excel.

Results

The plant height, the number of branches, total dry weight, 
total phenols and flavonoids, proline content, the activity of 
the CAT, SOD, and APX enzymes, and essential oil yield 
were influenced by the interaction between the irrigation 
regime and stress modifier biostimulants. RWC, chlorophyll 
content, total soluble sugar, nutrients of N, P, and K, and 
essential oil were only influenced by the simple effects of the 
irrigation regime and stress modifier biostimulants (Table 2).

Growth Traits

The plant height, the number of branches, and total dry 
weight were significantly increased by the stress modulators 
application in both irrigation regimes compared to the con-
trol plants (Fig. 2). The highest plant height (38.02 cm), the 
number of branches (28.66), and total dry weight (59.88 g 
plot−1) were found to be related to full irrigation and the 
foliar application of HA, which did not differ significantly 
from SW treatment. The lowest plant height (19.86 cm), the 
number of branches (12.77), and total dry weight (19.10 g 
plot−1) were obtained from plants with deficit irrigation and 
without the application of stress modulator (control) (Fig. 2).

Relative Water Content (RWC)

According to the results, the relative water content in full 
irrigation was higher than in deficit irrigation conditions 
(Fig. 3). The RWC of leaves in full irrigation and deficit 
irrigation conditions was 67.90 and 59.44%, respectively 
(Fig. 3). The mean comparison for the application of stress 
modulators revealed that the highest RWC of 73.13% was 
obtained from plants treated with HA, which did not differ 
significantly from SW treatment. The lowest one (51.41%) 
was obtained from treatment without the application of 
stress modulators (Fig. 3).

(2)Essential oil yield = Essential oil percentage × herbage dryweight per plant
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Chlorophyll Content

According to means comparison, the content of chlorophyll 
a and b in full irrigation conditions was greater than in 
deficit irrigation conditions (Fig. 4). The mean comparison 
indicated that the highest chlorophyll a and b were 2.47 and 
1.68 mg g−1 FW, respectively (Fig. 4), which were observed 
by plants treated with HA, which did not differ significantly 
from SW treatment (Fig. 4).

Total Phenols and Flavonoids

The highest total phenols and flavonoids were 7.93 and 
0.85 mg g−1 DW, respectively (Fig. 5), which were observed 
in plants treated with deficit irrigation and HA treatment. 
The lowest ones (3.42 and 0.29 mg g−1 DW) were obtained 
from plants with full irrigation and without the application 
of stress modulators (control) (Fig. 5). However, total phe-
nols and flavonoids in deficit irrigation plants were signifi-
cantly higher than in plants with full irrigation (Fig. 5).

Total Soluble Sugar and Proline Content

According to means comparison, the concentrations of total 
soluble sugar in deficit irrigation conditions were greater 
than in full irrigation conditions (Fig. 6). The mean compari-
son indicated that the highest concentrations of total solu-
ble sugar (14.16 μmol g−1 FW) were in control. The lowest 
was 8.48 μmol g−1 FW obtained in plants sprayed with HA, 
which did not differ significantly from SW treatment (Fig. 6). 
The application of stress modulators resulted in a decrease in 
proline content in both irrigation regimes (Fig. 6). Accord-
ingly, the highest proline content (3.80 μg g−1 FW) was 
obtained from control (deficit irrigation conditions without 
the application of stress modulators), which differed signifi-
cantly from the other treatments. The lowest proline content 
(1.55 μg g−1 FW) was observed in plants treated with full 
irrigation and sprayed with HA (Fig. 6).

Nutrients of N, P and K

Based on the comparison of means, the highest percentage 
of nitrogen, phosphorus, and potassium were 2.29, 0.30, and 
1.73% in full irrigation conditions, respectively, while the 
lowest ones (2.08, 0.25, and 1.52%) were obtained in deficit 
irrigation plants, respectively (Fig. 7). The percentage of N, 
P, and K were significantly higher in the full irrigation treat-
ment than in deficit irrigation conditions (Fig. 7). The mean 
comparison for the effect of stress modulators indicated that 
the application of stress modulators increased the percent-
age of N, P, and K significantly versus control (Fig. 7). The 
highest percentage of N (2.44%), P (0.32%), and K (1.71%) 
were observed by plants treated with HA, which did not Ta
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differ significantly from SW treatment (Fig. 7). However, the 
lowest percentage of N (1.89%), P (0.23%), and K (1.51%) 
was obtained from control plants (without the application 
of fertilizer) (Fig. 7).

Antioxidant Enzymes Activity

The highest CAT, SOD, and APX were 3.31, 80.39, and 
1.53 μmol g−1, respectively (Fig. 8), which were observed 
in plants under deficit irrigation conditions and HA treat-
ment. Also, there was no significant effect on CAT, and 
APX activity in deficit irrigation conditions for HA treat-
ment compared to the SW. The lowest ones (0.79 and 

Fig. 2   Means comparison of the interactive effect of irrigation regime 
and stress modulators application on plant height (a), the number of 
branches (b), and total dry weight (c). The same letters show a non-

significant difference at P ≤ 0.05 by LSD test. ZN, zinc nano-fer-
tilizer; AA, amino acid; SW, seaweed; HA, humic acid; C, control; 
FIrr, full irrigation; DIrr, deficit  irrigation
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33.14, and 0.58 μmol g−1) were obtained from plants with 
full irrigation and without the application of stress mod-
ulators (control) (Fig. 8). Also, there was no significant 
effect on CAT, and APX activity in full irrigation con-
ditions for HA treatment compared to the SW and AA. 
However, CAT, SOD, and APX activity in deficit irriga-
tion plants were significantly higher than in plants in full 
irrigation conditions (Fig. 8).

Essential Oil and Essential Oil Yield

According to the results, the essential oil in deficit irriga-
tion plants was higher than in full irrigation conditions 
(Fig. 9). The essential oil in deficit and full irrigation con-
ditions was 2.65 and 3.27%, respectively (Fig. 9). Mean 
comparison for stress modulators revealed that the highest 
essential oil of 3.50% was obtained from plants treated 
with HA. The lowest one (2.25%) was obtained from the 
control treatment (Fig. 9). The highest essential oil yield 
of 1.90 g plot−1 was obtained from plants that received full 

Fig. 3   Means comparison of the simple effect of irrigation regimes 
and stress modulators application on RWC. The same letters show 
a non-significant difference at P ≤ 0.05 by LSD test. ZN, zinc nano-

fertilizer; AA, amino acid; SW, seaweed; HA, humic acid; C, control; 
FIrr, full irrigation; DIrr, deficit irrigation

Fig. 4   Means comparison of the simple effect of irrigation regime 
and stress modulators application on chlorophyll a (A) and b (B) con-
tent. The same letters show a non-significant difference at P ≤ 0.05 

by LSD test. ZN, zinc nano-fertilizer; AA, amino acid; SW, seaweed; 
HA, humic acid; C, control; FIrr, full irrigation; DIrr, deficit irriga-
tion
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irrigation and were treated with HA, whereas the lowest 
one (0.48 g plot−1) was obtained from plants that received 
deficit irrigation and without the application of stress 
modulators (Fig. 9).

Discussion

Growth Traits

In the current research, the foliar application of HA, SW, 
AA, and ZN improved the growth traits of garden thyme 
under water deficit stress (Fig.  2). HA and SW were 
reported to improve crop growth and production in water 
shortage conditions by enhancing nutrient availability 
and uptake (Yildiztekin et al. 2018). Moreira et al. (2015) 
reported that foliar application of AA and ZN increased 
the efficiency of photosynthesis and improved the growth 
of alfalfa in tropical areas. The stimulatory effect of stress 
modulators such as SW and AA on plant growth, develop-
ment, and yield is attributed to an increase in endogenous 
hormone content and function (Shafie et al. 2021).

Relative Water Content (RWC)

Relative water content is one of the most important charac-
teristics of the plant's water balance. Relative water content 
plays an important role in regulating stomatal conductance 
and hence the photosynthetic rate of the plant (Amirnia et al. 
2019). Reducing growth and root activity and increasing 
evapotranspiration from the plant community are known 

Fig. 5   Means comparison of the interactive effect of irrigation regime 
and stress modulators application on total phenols (a) and flavonoids 
(b). The same letters show a non-significant difference at P ≤ 0.05 by 

LSD test. ZN, zinc nano-fertilizer; AA, amino acid; SW, seaweed; 
HA, humic acid; C, control; FIrr, full irrigation; DIrr, deficit irriga-
tion

Fig. 6   Means comparison of the effect of irrigation regime and stress 
modulators application on proline content (a) and total soluble sugar 
(b). The same letters show a non-significant difference at P ≤ 0.05 by 
LSD test. ZN, zinc nano-fertilizer; AA, amino acid; SW, seaweed; 
HA, humic acid; C, control; FIrr, full irrigation; DIrr, deficit irriga-
tion
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to be factors contributing to RWC reduction (Khorasa-
ninejad et al. 2018; Raza et al. 2021). Because HA, SW, 
and AA are effective in root development and therefore the 

ability to absorb water and nutrients, they can be expected 
to have a positive effect (Khorasaninejad et al. 2018; Shafie 
et al. 2021). Therefore, it seems that increasing the relative 

Fig. 7   Means comparison for the simple effect of irrigation regime 
and stress modulators application on the percentage of nitrogen (a), 
phosphorus (b), and potassium (a). The same letters show non-sig-

nificant difference at P ≤ 0.05 by LSD test. ZN, zinc nano-fertilizer; 
AA, amino acid; SW, seaweed; HA, humic acid; C, control; FIrr, full 
irrigation; DIrr, deficit irrigation
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water content of the leaf under drought stress is due to the 
improvement in the assimilation and photosynthesis and 
growth rate of plants as a result of the foliar application of 
SW, HA, AA, and ZN.

Chlorophyll Content

In this research, foliar application of SW, HA, AA, and ZN 
increased the garden thyme leaf chlorophyll content (Fig. 4). 

Fig. 8   Means comparison of the interactive effect of irrigation regime 
and stress modulators application on CAT, catalase activity (a); 
SOD, superoxide dismutase activity (b); and APX, ascorbate peroxi-
dase activity (c). The same letters show non-significant difference at 

P ≤ 0.05 by LSD test. ZN, zinc nano-fertilizer; AA, amino acid; SW, 
seaweed; HA, humic acid; C, control; FIrr, full irrigation; DIrr, deficit 
irrigation
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Because photosynthesizing pigments (chlorophyll) are 
always found attached to proteins (Amirnia et al. 2019), the 
application of stress modulators such as HA, SW, and AA 
provides the N requirements of photosynthesizing pigments 
and plant proteins, resulting in an increase in the amount of 
these pigments in the plants (Aalipour et al. 2019; Shafie 
et al. 2021). It is reported that the foliar application of SW 
and HA can enhance photosynthesis and increase tolerance 
to living and non-living stresses (Yildiztekin et al. 2018). 
Humic acid also increases photosynthetic activity in drought 
conditions by increasing the activity of the enzyme rubisco 
(Delfine et al. 2005). They found that chlorophyll is reduced 
significantly under severe drought stress conditions due to 
the low rate of synthesis or rapid decomposition of chloro-
phyll. The reason for chlorophyll loss in plants exposed to 
water deficit stress is the increased degradation of these pig-
ments or the loss of their synthesis, as well as the disruption 
of enzyme activity responsible for the synthesis of photo-
synthesizing pigments, which reduces assimilation and thus 
entails yield losses (Amirnia et al. 2019; Nasar et al. 2021).

Total Phenols and Flavonoids

Based on the present results, the foliar application of SW, 
HA, AA, and ZN increased the total phenols and total flavo-
noids of the leaf of garden thyme in both irrigation regimes 
(Fig. 5). It is reported that the application of SW, HA, and 
AA enhanced the synthesis of phenolic compounds in plants 
under water shortage conditions (Akladious and Mohamed 
2018). In this regard, Aminifard et al. (2012) reported that 
the foliar application of HA treatment increased the phe-
nolic compounds of pepper plants compared to control. 

These increases may be attributed to the active role of HA 
in the improvement of antioxidants, which scavenge ROS 
that is associated with oxidative stress. Plant phenols and 
flavonoids are expected to play an important role in plants as 
defence compounds against the higher damage of free radi-
cals, and other reactive oxygen species compounds as sec-
ondary natural metabolites (Rahimi et al. 2019). By increas-
ing irrigation intervals, the phenol and flavonoids of thyme 
plants continued to accumulate in the highest amounts, and 
the application of stress modulators such as HA, SW, AA, 
and ZN diminished their accumulation.

Total Soluble Sugar and Proline Content

It is reported that soluble sugar has a role as an osmopro-
tectant, regulating osmotic adjustment, providing membrane 
protection, and scavenging toxic reactive oxygen species in 
water deficit stress conditions (Singh et al. 2015). Sakr et al. 
(2019) reported that increased photosynthesis and growth 
rate of red radish plants in field conditions with HA and 
SW treatments increased carbohydrate content rate. Proline 
performs as a cytosol enzyme protector (protection of car-
boxylase) and cell structure defender, so it is increased in 
cells under water shortage conditions (Amirnia et al. 2019). 
Among organic osmolytes, proline is the most prevalent and 
abundant suitable soluble substance that accumulates in 
water deficit stress conditions (Khorasaninejad et al. 2018). 
Sprayed plants with stress-modulating treatments such as 
HA and SW can usually utilize water and nutrients better to 
outperform non-sprayed plants under water shortage condi-
tions (Yildiztekin et al. 2018). So, the proline content of 

Fig. 9   Means comparison for the effect of irrigation regime and stress 
modulators application on essential oil (a) and essential oil yield (b). 
The same letters show non-significant difference at P ≤ 0.05 by LSD 

test. ZN, zinc nano-fertilizer; AA, amino acid; SW, seaweed; HA, 
humic acid; C, control; FIrr, full irrigation; DIrr, deficit irrigation
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those plants shows a lower increase as compared with non-
sprayed plants.

Nutrients of N, P and K

In this research, foliar application of HA, SW, AA, and ZN 
increased the content of N, P, and K in the garden thyme 
leaf (Fig. 7). Enhanced nutrient absorption by SW and AA 
might be related to enhanced cell membrane permeabil-
ity and hormone-like functions (Shafie et al. 2021). It has 
been observed that nutrient uptake and their accumulation 
in the thyme plant significantly decline in water shortage 
stress conditions (Mohammadzadeh and Pirzad 2021). 
Several explanations have been developed to describe this 
scientific finding. The decline in soil available water limits 
its uptake. In addition, as soil moisture is decreased, nutri-
ent solubility is decreased (Amirnia et al. 2019; Moham-
madzadeh and Pirzad 2021). A decline in water absorption 
leads to a reduction in photosynthesis and transpiration 
from a physiological point of view (Nasar et al. 2021). 
To save energy, the active translocation systems of the 
plants are also disrupted under these conditions. All these 
conditions together reduce the absorbing area of roots and 
nutrient uptake (Amirnia et al. 2019).

Antioxidant Enzymes Activity

Antioxidant enzyme activity augmentation is one of the 
defence strategies of the plant against many abiotic and 
biotic stresses (Ahmadian et al. 2021). When plants are 
subjected to drought stress, the concentration of ROS 
increases, which can harm proteins, lipids, carbohydrates, 
and nucleic acids. Plants for the purification and detoxifi-
cation of ROS in cells have an enzymatic defence system 
that increases tolerance to drought stress (Ahmadian et al. 
2021).

The SOD activity was enhanced by water shortage stress 
and showed an increase in plants treated with HA, SW, AA, 
and ZN compared to control plants (Fig. 8). By increasing 
the SOD enzyme activity, superoxide radicals are scavenged, 
and thus membrane damage and oxidative stress are reduced, 
increasing plants' oxidative stress tolerance (Ahmadian et al. 
2021). Mansori et al. (2016) had similar findings and stated 
that an increase in SOD activity and a reduction in oxidative 
damage stress were directly correlated. Other key antioxi-
dant enzymes that convert H2O2 to water, such as CAT and 
APX, are required for ROS detoxification under stressful 
conditions (Mansori et al. 2016).

Based on our findings, CAT and APX activities were 
increased in water deficit stress. Mansori et  al. (2015) 
noticed increased CAT and APX activity in bean plants 
exposed to water stress and may have resulted in higher 

H2O2 scavenging. This finding supported the important 
effect of HA, SW, AA, and ZN on plant water deficit toler-
ance. The partnership of antioxidant enzymes is substantial 
for ROS scavenging in plant cells (Ahmadian et al. 2021). 
Many researchers have found that HA and SW increase 
APX activity, demonstrating HA and SW's powerful anti-
oxidant effects, which have been related to bioactive com-
pounds (Yildiztekin et al. 2018). It is reported that HA and 
SW improve water deficit stress tolerance by activating the 
antioxidative enzyme mechanism of superoxide dismutase, 
catalase, and ascorbate peroxidase activity, as well as by 
increasing the total phenolic compounds, which contribute 
to the defence of plants against oxidative damage to plant 
cells mediated by ROS (Latique et al. 2017; Khorasanine-
jad et al. 2018; Shafie et al. 2021). Our findings show that 
increased antioxidative enzyme activities due to SW, HA, 
AA, and ZN treatments may have ameliorated the physi-
ological situation of garden thyme plants comprehensively.

Essential Oil and Essential Oil Yield

In response to water shortage stress, more metabolites and 
materials are produced in plants, and these substances pre-
vent oxidation in the cells (Alavi-Samani et al. 2015). The 
beneficial roles of stress modulators such as HA, SW, AA, 
and ZN in the improvement of quantitative and qualita-
tive yields of essential oils have been reported by previous 
studies (Najafivafa et al. 2015; Noroozisharaf and Kaviani 
2018; Sakr et al. 2019). Essential oils are terpenoids that 
require acetyl-CoA, ATP and NADPH for synthesis (Pirzad 
and Mohammadzadeh 2018). Therefore, essential oil bio-
synthesis is reliant on the plant's inorganic nutrient supply 
(Mohammadzadeh and Pirzad 2021). In the current study, 
the application of stress modulators such as SW, HA, and 
AA might be due to an improvement in plant water relations 
and nutrient uptake compared to control plants, which in 
turn enhanced essential oil content. Under water shortage, 
essential oil yield decreases and/or increases caused by the 
interaction between the increased essential oil percentage 
and the reduced yield (Pirzad and Mohammadzadeh 2018). 
The application of stress modulators such as SW, HA, and 
AA indicated an eco-friendly strategy to enhance the sus-
tainability of the production of bioactive molecules in the 
investigated thyme plant.

Conclusion

According to the results, plants of garden thyme declined 
under water deficit stress after treatment by stress modula-
tors of HA and SW by reducing the impact of water defi-
cit stress with an improvement in the vegetative growth 
traits, RWC, chlorophyll content, uptake of nutrients, and 
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enzymatic antioxidant traits. The foliar application of HA 
and SW increased the plant's height, the number of branches, 
and the total dry weight of the plant in water shortage con-
ditions. Also, we noticed the improvement of antioxidant 
system activity by the activation of enzymes (CAT, SOD, 
and APX) and increasing total phenols and flavonoids, which 
indicate the protection of plants against lipid peroxidation 
imposed by water deficit stress. Essential oil content was 
increased in water deficit stressed plants compared to full 
irrigated plants. The highest essential oil content was signifi-
cantly observed in the treatment of HA. Overall, the results 
revealed that foliar applications of stress modulators could 
potentially mitigate the harmful effects of water deficits on 
garden thyme growth under such conditions. Therefore, our 
findings potentially suggest that the foliar application of HA 
and SW can alleviate the adverse effects of water stress on 
garden thyme, which could be an appropriate method for 
reducing the negative effects of water shortages, especially 
in arid and semiarid regions where water deficits are the 
main obstacle to plant growth.
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