Vervet Monkeys Vaccinated with Killed Leishmania major Parasites and Interleukin-12 Develop a Type 1 Immune Response but Are Not Protected against Challenge Infection

1. Michael M. Gicheru,
2. Joseph O. Olobo,†,
3. Christopher O. Anjili,
4. Alloys S. Orago,
5. Farrokh Modabber and
6. Phillip Scott,*

+ Author Affiliations

1. Institute of Primate Research,
2. Kenya Medical Research Institute, and
3. Kenyatta University, Nairobi, Kenya;
4. World Health Organization/TDR, Geneva, Switzerland; and
5. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

ABSTRACT

Leishmania major is a protozoan parasite that causes chronic cutaneous lesions that often leave disfiguring scars. Infections in mice have demonstrated that leishmanial vaccines that include interleukin-12 (IL-12) as an adjuvant are able to induce protective immunity. In this study, we assessed the safety, immunopotency, and adjuvant potential of two doses of IL-12 when used with a killed L. major vaccine in vervet monkeys. The induction of cell-mediated immunity following vaccination was determined by measuring delayed-type hypersensitivity, in vitro lymphocyte proliferation, and gamma interferon (IFN-γ) production. Protection was assessed by challenging the animals with L. major parasites and monitoring the course of infection. At low doses of IL-12 (10 μg), a small increase in the parameters of cell-mediated immunity was observed, relative to those in animals that received antigen without IL-12. However, none of these animals were protected against a challenge infection. At higher doses of IL-12 (30 μg), a substantial increase in Leishmania-specific immune responses was observed, and monkeys immunized with antigen and IL-12 exhibited an IFN-γ response that was as great as that in animals that had resolved a primary infection and were immune. Nevertheless, despite the presence of correlates of protection, the disease course was only slightly altered, and protection was low compared to that in self-cured monkeys. These data suggest that protection against leishmaniasis may require more than the activation of Leishmania-specific IFN-γ-producing T cells, which has important implications for designing a vaccine against leishmaniasis.